I Международная (71 Всероссийская) научно-практическая конференция «Актуальные вопросы современной медицинской науки и здравоохранения»

лечебно-профилактической зубной пасты с экстрактами трав на состояние полости рта у пациентов с гингивитом // Проблемы стоматологии. 2015.- №2. С.5-9.

- 5. Еловикова Т.М., Ермишина Е.Ю., Белоконова Н.А. Клиническая характеристика отечественной лечебно-профилактической зубной пасты на основе растительных экстрактов. «Пародонтология». 2014.- № 2 (71).с.68-71.
- 6. Кузьмина Э.М., Козичева Т.А., Беня В.Н.,Лаптева Л.И. Лабораторная оценка влияния зубной пасты, содержащей 5% novamin®, на обтурацию дентинных канальцев. //Dentalforum. . № 4 [55].c.120-124.
- 7. Михейкина Н.И. Анализ показателей состояния органов и тканей полости рта кариесрезистентных и кариесподверженных лиц в динамике профилактических мероприятий. //Бюллетень ВСНЦ СО РАМН. 2015, 1 (101). c.29-33.
- 8. Михейкина Н.И. Обоснование резистентности зубов к кариесу с позиций супрамолекулярного строения эмали / Н.И. Михейкина, Т.М.Еловикова, И.Л. Горбунова //Второй Евразийский конгресс «Медицина, фармация и общественное здоровье» с международным участием. Сборник статей. Под ред. профессора Кутепова С.М. Екатеринбург: УГМУ, 2015.-С.92-96
- 9. Улитовский С.Б. Борьба с гиперчувствительностью зубов в домашних условиях. // Проблемы стоматологии. 2015. № 2.- с.25-28

УДК 616.314.13:615.242:215.015.4

Н.И. Михейкина, Т.М. Еловикова ОЦЕНКА ПРОНИЦАЕМОСТИ ТВЕРДЫХ ТКАНЕЙ ЗУБОВ ПОСЛЕ ВОЗДЕЙСТВИЯ АКВАКОМПЛЕКСА ГЛИЦЕРОСОЛЬВАТА ТИТАНА

Кафедра терапевтической стоматологии Уральский государственный медицинский университет Екатеринбург, Россия

N.I. Mikheykina, T.M. Elovikova EVALUATION OF PERMEABILITY OF DENTAL HARD TISSUE AFTER EXPOSURE TO AQUACOMPLEX GLITZEROFOSFATA TITANIUM

Department of Therapeutic Dentistry
Ural State Medical University
Ekaterinburg, Russia

Контактный e-mail: nataly2711@mail.ru

Аннотация. В статье проведена оценка проницаемости твердых тканей

зубов после воздействия аквакомплекса глицеросольвата титана. При нанесении на поверхность эмали зубов 50% водного раствора Тизоля наблюдается наибольшая глубина проникновения красителя.

Annotation. In article the estimation of the permeability of dental hard tissue after exposure to aquacomplex glitserosolvata titanium. When applied to the enamel surface of the teeth 50% aqueous solution Tizolum has the highest depth of penetration colourant.

Ключевые слова: Тизоль, аквакомплекс глицеросольвата титана, проницаемость эмали зубов.

Keywords: Tizolum, aquacomplex glitserosolvata titanium, permeability of tooth enamel

Введение.

Тизоль (аквакомплекс глицеросольвата титана) используется в разных областях медицины, как готовое лекарственное средство и как субстанция – основа для аптечного изготовления мягких лекарственных форм [4,8,6]. Высокая проникающая способность Тизоля и его лекарственных композиций подтверждены во многих областях медицины (хирургия, ревматология, онкология, дерматология, гинекология и т.д.). [1,2,5,7]

Особое место аквакомплекс глицеросольвата титана занял и в стоматологии. Высокая эффективность аппликационного применения Тизоля и его лекарственных композиций, связана с его структурой, обеспечивающей проникновение его компонентов в твердые ткани зуба. [3,4,8] Однако до сих пор отсутствует достаточный объем знаний о степени проницаемости твердых тканей зубов после воздействия аквакомплекса глицеросольвата титана. [10]

Филатовым Е.С. с соавт. с помощью метода лазерного светорассеяния была оценена микроструктура водных растворов Тизоля разных концентраций. Полученные результаты исследования водных растворов Тизоля подтверждают в его микроструктуре наличие наночастиц. Содержание наноразмерных частиц в водном растворе Тизоля возрастает с увеличением степени разбавления водой. Возможно, именно этим определяется высокая проводимость Тизоля через биологические среды и ткани, что, в свою очередь, предопределяет высокую эффективность применения Тизоля в разных сферах медицины. [9,1,3,4]

Цель исследования - оценить проницаемость твердых тканей зубов после воздействия различных концентраций аквакомплекса глицеросольвата титана.

Материалы и методы исследования

В качестве объекта исследования использовались 30 интактных зубов, удалённых по ортодонтическим показаниям у лиц в возрасте 18 — 45 лет. Зубы предварительно мыли в проточной воде со щеткой, очищали от зубных отложений, поверхность коронки полировали щеткой.

Приготовлены 50% и 90% водные растворы Тизоля.

Для оценки проницаемости твердых тканей зубов после воздействия аквакомплекса глицеросольвата титана in vitro было определено 3 группы

исследования. В первой группе исследования на вестибулярную поверхность эмали зубов наносили гель Тизоль, во второй - 90% водный раствор Тизоля, в третьей группе исследования - 50% водный раствор Тизоля. На предварительно высушенную вестибулярную поверхность зубов тонким слоем наносили аквакомплекс глицеросольвата титана с экспозицией 1 минута, затем наносили 2% метиленовый синий до полного высыхания. Далее осуществляли продольный распил зубов и исследовали окрашенную поверхность эмали.

Результаты исследования и их обсуждение

После проведенного исследования было установленно, что распилы первой группы зубов имели минимальную степень прокрашивани, глубина проникновения красителя 0,5-0,7 мм. (Рис 1. А) В образцах второй и третьей группы окрашивание отмечается на всю глубину эмали (до эмалево-дентинной границы). Причем при нанесении 50% водного раствора Тизоля эмаль зубов имела большую степень окрашивания, по сравнению с образцами второй группы исследования. (Рис.1 Б, В)

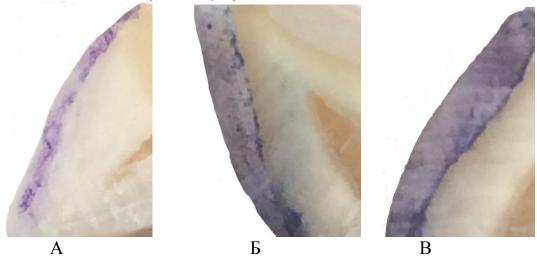


Рис.1. Окрашивание эмали при нанесении: А - Тизоль геля; Б — 90% водный раствор Тизоля; В — 50% водный раствор Тизоля

Это свидетельствует о проникающей способности аквакомплекса глицеросольвата титана.

Выводы

После проведенного исследования распилов зубов установлено, что аквакомплекс глицеросольвата титана обладает проникающей способностью через эмаль зубов. Глубина проникновения геля Тизоль возрастает с увеличением разбавления водой. При нанесении на поверхность эмали зубов 50% водного раствора Тизоль наблюдается наибольшая степень окрашивания.

Литература:

- 1. Базарный В.В. Оценка клинической эффективности Тизольультрафонофореза (ТЗ-УФФ) при спондилогенных дорсопатиях / В.В. Базарный, П.И. Щеколдин, Д.С. Самойлов // Вестник травматологии и ортопедии Урала № 1-2 / 2011.c.43-46.
 - 2. Белоконова Н.А. Витаминно-минеральный комплекс и эффективность

адсорбции аскорбиновой кислоты/ Н.А. Белоконова, Т.М. Еловикова, В.С. Молвинских //Пародонтология -2015. -№4. -c.35-38.

- 3. Еловикова Т.М., Ронь Г.И., Емельянов А.С. Опыт применения Тизоля как системы локальной доставки лекарственных веществ в лечении пародонтита / Новые технологии в медицине и фармации. Тизоль: Сборник научных статей. Материалы межрегиональной научно-практической конференции/Под ред. О.П. Ковтун. Екатеринбург: ГОУ ВПО УГМА Росздрава, 2010. с. 26-35.
- 4. Еловикова Т.М., Седых Н.А., Емельянова И.В., Кощеев А.С. Применение системы локальной доставки лекарственных веществ аквакомплекса глицеросольвата титана в терапии воспаления тканей пародонта. XIX Международная конференция Челюстно-лицевых хирургов и стоматологов «Новые технологии в стоматологии». С-Петербург. 2014. c.43-44.
- 5. Емельянов А.С., Смирнова М.В., Петров А.Ю., Емельянова И.В. Оригинальный лекарственный препарат Тизоль гель для целенаправленной доставки лекарственных веществ в патологический очаг при термических и лучевых поражениях. Высокие технологии, фундаментальные и прикладные исследования в физиологии, фармакологии и медицине. СПбГПУ. 2011. Т.3. С.24-26.
- 6. Ронь Г.И., Еловикова Т.М. «Способ введения препаратов в ткани зубов». Описание изобретения к патенту РФ № 2214815, 2003 г.
- 7. Смагина Т.А. «Фармакотехнологические исследования комплексных препаратов с Тизолем». Материалы межрегиональной научно-практической конференции «Новые технологии в медицине и фармации. Тизоль», г.Екатеринбург, 2010 г.
- 8. Терентьева Н.Е., Илиев К.И., Кобелева Т.А., Сичко А.И. Количественное определение натрия пара-аминосалицилата в лекарственной форме с тизолем // Современные проблемы науки и образования. 2014. № 6. URL: www.science-education.ru/120-15511
- 9. Филатов Е.С., Поротникова Н.М., Петров А.Ю., Емельянов А.С., Смирнова М.В., Еловикова Т.М., Ронь Г.И., Цап Н.А. Исследование водных растворов лекарственного препарата Тизоль геля. Екатеринбург: Материалы ежегодной конференции «Фармация и общественное здоровье». 2011. С.61-63.
- 10. G. S. Zakharova, E. I. Andreikov, V. A. Osipova, Yu. G. Yatluk, I. S. Puzyrev, "Effect of the titanium glycerolate precursor heat treatment procedure on the morphology and photocatalytic properties of TiO2 nanopowder", Inorg Mater, 49:11 (2013)
- 11. V. A. Osipova, G. S. Zakharova, E. I. Andreikov, Yu. G. Yatluk, I. S. Puzyrev. Sol-gel synthesis of titanum dioxide by hydrolysis of titanium glycerolates and peroxides. Glass Physics and Chemistry. July 2013, Volume 39, Issue 4, pp 398-402