I Международная (71 Всероссийская) научно-практическая конференция «Актуальные вопросы современной медицинской науки и здравоохранения»

- 3. Кузьмина Э.М. Стоматологическая заболеваемость населения России. Состояние твёрдых тканей зубов. Распространённость зубочелюстных аномалий. Потребность в протезировании./ Под редакцией проф. Э.М. Кузьминой-М.: МГМСУ, 2009.- С.164.
- 4. Янушевич О.О. Стоматологическая заболеваемость населения России. Состояние тканей пародонта и слизистой оболочки рта./ Под редакцией проф. О.О.Янушевича М.: МГМСУ, 2008.-С.160.

УДК 615.462

А.П. Коледа, А.С. Самодуров, Н.А.Белоконова ЗАВИСИМОСТЬ ВЫДЕЛЕНИЯ ОСТАТОЧНОГО МОНОМЕРА ИЗ ОБРАЗЦОВ МАТЕРИАЛА RE-FINEBRIGHT ОТ СООТНОШЕНИЯ ПОЛИМЕРА И МОНОМЕРА

Кафедра общей химии Уральский государственный медицинский университет Екатеринбург, Россия

A.P. Koleda, A.S. Samodurov, N.A.Belokonova DEPENDENCE OF LIBERATION OF RESIDUAL MONOMER FROM REFINE BRIGHT MATERIAL SAMPLES FROM POLYMER/MONOMER RATIO

Department of General Chemistry Ural State Medical University Yekaterinburg, Russia

Контактный e-mail: an_d_r_ew@mail.ru

Аннотация. В данной статье представлены результаты экспериментальной оценки степени выделения остаточного мономера при различном соотношении компонентов используемых для замешивания пластмассы.

Annotation. In this article shown the results of experimental evaluation of residual monomer quantity in different polymer/monomer ratio.

Ключевые слова: Re-fineBright, остаточный мономер

Keywords: Re-fine Bright, residual monomer

Любой протез подвержен повреждениям, так как ротовая полость является очень агрессивной средой, в которой он подвергается химическому, механическому и ферментативному воздействию [1,4]. Для реставрации протеза используется материал Re-fineBright - многофункциональная акриловая пластмасса холодного отверждения, которая представляет собой систему

порошок-жидкость. Основой жидкости является мономер-метилметакрилат. Порошок является полимером. Замешивание производится инструкции в определенном соотношении в интервале от 1:2 до 1:1,4 (жидкость:порошок). Нарушение процессов полимеризации приводит к тому, что мономер полностью не вступает в реакцию и часть его остается в свободном (остаточном) состоянии. Полимеризат всегда содержит остаточный мономер, который продолжает выделяться в полость рта на протяжении всего срока службы протеза. Мономер, попадая в слюну, может провоцировать токсико-аллергические реакции общего и местного характера[3]. Необходимо сохранять оптимальное соотношение используемых компонентов и производить оценку качества материала [2,3].

Цель исследования - провести экспериментальную оценку степени выделения остаточного мономера из пластмассовых образцов с разным соотношением компонентов (порошка и жидкости).

Материалы и методы исследования

Исследование проводилось на базе кафедры общей химии УГМУ. Были приготовлены растворы с концентрацией ионов Ca^{2+} равной $8,5*10^{-3}$ моль экв/л и Mg^{2+} равной $6*10^{-3}$ моль экв/л, моделирующие содержание данных ионов в слюне. При помощи кондуктометра производилось измерение изменения электропроводимости модельных растворов в динамике после погружения в них образцов материала. Метод спектрофотомерии использовался для обнаружения в растворах органических веществ с определенными функциональными группировками после погружения в него образца материала.

Результаты исследования и их обсуждение

Рис. 1. Изменение электропроводимости

Из данного графика (рис. 1) видно, при погружении что дистиллированную воду и модельные растворы образца материала происходит мономера, остаточного 0 чем свидетельствует электропроводимости. Можно установить, что в растворах солей кальция и магния вымывание происходит интенсивнее, чем в дистиллированной воде, а в растворе кальция наиболее активно, что видно по наибольшему изменению электропроводимости. Если же говорить о соотношении, в котором были смешаны порошок и жидкость в образцах, то видно, что при меньшем количестве жидкости, выделяется меньше остаточного мономера.

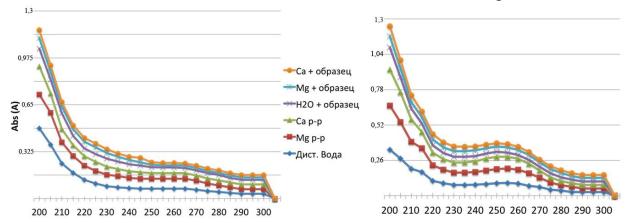


Рис. 2. Данные спектрофотометрии для образца с соотношениями 1:2 и 1:1,4

На данных графиках (рис. 2) по изменению оптической плотности растворов после погружения в них образцов материала видно, что при соотношении жидкости и порошка 1:2 уровень остаточного мономера ниже, чем при соотношении 1:1,4. Также можно заметить ту же тенденцию, что и при измерении электропроводимости растворов, а именно сделать вывод о том, что в растворах солей вымывание остаточного мономера происходит интенсивнее, чем в дистиллированной воде, а в растворе солей Ca²⁺ наиболее интенсивно.

Выводы:

- 1. Чем меньше добавление жидкости (мономера) при замешивании материала, тем меньше остаточного мономера вымывается из изделия, следовательно, оптимальным является соотношение 1:2.
- 2. В растворах солей вымывание происходит значительно быстрее, чем в дистиллированной воде, поэтому рекомендуем отмывать изделия в растворах солей ${\rm Ca}^{2+}$ с концентрацией 8,5 * 10^{-3} моль экв/л, так как в них вымывание происходит сильнее, чем растворах солей ${\rm Mg}^{2+}$.Критерием отмывки изделия может служить изменение электропроводимости или оптической плотности при длинах волн в диапазоне 200-300 нм.

Литература:

- 1. Аболмасов Н.Г., Аболмасов Н.Н. Ортопедическая стоматология // МЕДпресс-информ М. 2003.
- 2. Брель А.Л., Дмитриенко СВ., Котляревская О.О. Полимерные материалы в клинической стоматологии. // Волгоград, 2006.
 - 3. Дебский В. Полиметилметакрилат. // М., 1972.
- 4. Дойников А.И., Синицын В.Д. Зубопротезное материаловедение. // М., 1981.