
Рис. 1. Корреляционные связи уровня HbA1c и систолического миокардиального стресса

ВЛИЯНИЕ ПОЛА НА РАННЮЮ СТРУКТУРНО-ФУНКЦИОНАЛЬНУЮ ПЕРЕСТРОЙКУ ЛЕВОГО ЖЕЛУДОЧКА У БОЛЬНЫХ АРТЕРИАЛЬНОЙ ГИПЕРТЕНЗИЕЙ

Поддубная А.В., Евсина М.Г., Дмитриев А.Н., Футерман Е.М., $\mbox{ Хурс Е.М. }$

Введение

В начале XXI века наиболее массовым видом патологии стала артериальная гипертензия (АГ), являющаяся самой частой причиной инвалидизации и смертности людей молодого и зрелого возраста. При этом прослеживается тенденция к поражению этим заболеванием все более молодых людей. По данным многочисленных данных [1,2.3] установлено, что течение АГ у мужчин и женщин имеет различный характер. Однако далеко не все вопросы, касающиеся данной проблемы, остаются изученными.

Цель: Изучить влияние пола на развитие структурно-функциональных изменений левого желудочка (ЛЖ) и вариабельности сердечного ритма (ВРС), оценить их взаимосвязи.

Материалы и методы:

Проведено открытое одномоментное исследование группы пациентов с АГ, включающей 156 женщин (группа 1), средний возраст 43,94±10,13 и 127 мужчин (группа 2), средний возраст 44,44±11,32. Как видно из таблицы 1, группы были сравнимы по возрасту, степени АГ, уровню САД, ДАД и ИМТ.

В исследование включались пациенты младше 50 лет, с АГ 1 степени, критериями исключения были симптоматический характер АГ, наличие клинико-инструментальных проявлений ИБС и ХСН, нарушения сердечного ритма и проводимости, пороки сердца, хронические заболевания экстракардиальной локализации.

Диагноз АГ устанавливался согласно рекомендациям по диагностике и лечению АГ [4]. Верификация степени АГ проводилась по данным СМАД с использованием общепринятых параметров [5].

Эхокардиографическое исследование проводилось на аппарате «Aloka SSD 4000» фазированным датчиком с частотой в секторальном режиме с оценкой показателей, характеризующих структуру и функцию сердца, в соответствии с рекомендациями Европейского общества кардиологов (2006) [6].

Исследование левого желудочка (ЛЖ) включало измерение конечнодиастолического (КДР, мм) и конечно-систолического (КСР, мм) размеров, высоты ЛЖ в систолу и диастолу (Нс и Нд, мм, соответственно), толщины межжелудочковой перегородки (ТМЖП, мм) и задней стенки ЛЖ (ТЗС, мм) ЛЖ в систолу и диастолу. По методу Teichholz рассчитывались объемные показатели ЛЖ: конечно-диастолический (КДО, мл), конечно-систолический (КСО, мл) и ударный объемы (УО, мл) ЛЖ и фракция выброса (ФВ, %). Массу миокарда ЛЖ определяли по формуле Penn Convention (предложена R.В.

Devereux and N.Reichek) [7]. Полученные объемные показатели индексировали по отношению к площади поверхности тела (ППТ) (КДОИ=КДО/ППТ. КСОИ=КСО/ППТ, УОИ=УО/ППТ). Площадь поверхности тела рассчитывали по стандартной формуле Du Bois [8]. Рассчитывали индексы ремоделирования (ИР) ЛЖ: индекс сферичности ЛЖ в систолу и диастолу (ИСс и ИСд, ед.); интегральный систолический инлекс ремоделирования (ИСИР, ел.): миокардиальный стресс по меридиану (МС, дин/см²) в систолу и диастолу: интегральный диастолический индекс ремоделирования (ИДИР, ед.); ФВ/МСс. ФВ/МСд, МСс/КСОИ, МСд/КДОИ; конечно-диастолическое давление (КДД, мм рт.ст.) рассчитывали по формуле Т. Stork [9]: конечное диастолическое напряжение стенки (КДНС, дин/см²) рассчитывали по уравнению Лапласа [10]. За признак гипертрофии левого желудочка (ГЛЖ) взят стандартный критерий -ИММЛЖ более 115г/м² для мужчин и более 95г/м² для женщин [11]. Типы геометрии левого желудочка определялись на основании классификации Ганау 1992 г. [6] с учетом рекомендаций Европейского общества кардиологов 2006 г. [11].

Диастолическая функция ЛЖ сердца оценивалась по следующим показателям: максимальная скорость и время раннего диастолического наполнения (V_E , м/сек и T_E , мс), максимальная скорость и время наполнения ЛЖ во время систолы левого предсердия (V_A , м/сек и T_A , мс), соотношение E/A, время изоволюмического расслабления ЛЖ (IVRT, мс), время замедления потока раннего диастолического наполнения ЛЖ (DTe, мс).

С целью оценки ВРС проводилось бифункциональное суточное мониторирование электрокардиограммы (ЭКГ) с использованием монитора CardioTens-01 (Венгрия). Методика и анализ полученных результатов, проводились на основании рекомендаций Европейского общества кардиологии и Северо-Американского Электрофизиологического общества [9]. ВРС анализировалась с помощью: 1. временных параметров ВРС: SDNN (мс) — стандартное отклонение от средней продолжительности R-R интервалов (отражает общую вариабельность ритма сердца, обусловленную всеми

периодическими составляющими сердечного ритма для данной записи, зависит от возлействия как симпатической, так и парасимпатической нервной системы): IIRVti - триангулярный индекс - общее количество R-R интервалов, деленное на высоту гистограммы всех R-R интервалов, измеренную по дискретной шкале с шагом 1/128 сек (характеризует общую BCP); rMSSD (мс) – квадратный корень из средней суммы квадратов разности между соседними R-R интервалами (используется преимущественно для оценки высокочастотного (вагусного) компонента спектра); SDANN (мс) – стандартное отклонение средних значений интервалов R-R, вычисленных по 5-минутным промежуткам (используется преимущественно для оценки низкочастотного (симпатического) компонента спектра). 2. спектральных параметров ВРС: TP (мс²) - общая мошность колебаний ЧСС в диапазоне от 0.005 до 0.8 Гц (полный спекто частот): LF (мс²) – мощность колебаний ЧСС в низкочастотном диапазоне от 0.05 до 0.15 Γ ц (низкочастотная составляющая спектра); HF (мс²) – мощность колебаний ЧСС в высокочастотном диапазоне от 0,15 до 0,4 Гц (высокочастотная составляющая спектра); LF/HF (нормализованные единицы) - индекс симпатовагального взаимодействия.

Статистическая обработка результатов проводилась с использованием компьютерной программы Statistica for Windows 6.0 (StatSoft Inc., США).

Результаты и их обсуждение

При лабораторном обследовании у мужчин были выявлены статистически значимо более низкие значения ЛПВП и более высокий индекс атерогенности, чем у женщин (табл. 1). Однако, данные различия не были сопряжены с отклонениями от нормативных значений указанных параметров [13], что означает отсутствие наличия дислипидемии и проявлений каротидного атеросклероза.

Прежде, чем анализировать различия структурно-функциональных характеристик ЛЖ, были детально изучены особенности гемодинамики в исследованных группах мужчин и женщин по данным СМ АД (табл. 2). Индексы, характеризующие уровень АД (мпАД, АДср, гипертонические

индексы) не имели различий. Коэффициент вариации АД соответствовал низкому риску и был сравним у мужчин и женщин. Суточный индекс (DI) оказался статистически значимо более высоким у мужчин как для систолического, так и для диастолического АД. Однако, в обеих группах значения суточного индекса соответствовали значениям «dipper», и указанные различия не имели клинической значимости. ЧСС также не различалась у мужчин и женщин. Таким образом, мужчины и женщины в исследованных группах имели сходные параметры общей гемодинамики, что исключало влияние нагрузки давлением и частотные влияния на закономерности ремоделирования сердца.

При стандартном ЭХОКГ исследовании у мужчин по сравнению с женщинами выявлены большие линейные размеры ЛЖ (КСР, КДР, толщины стенок и высоту ЛЖ в систолу и диастолу), объемы ЛЖ, что соответствовало различиям конституционального характера (табл. 3).

Однако, различий в параметрах систолической и диастолической функции ЛЖ между мужчинами и женщинами выявлено не было (табл. 3).

При анализе распределения *мужчин* и *женщин* по классификации типов ремоделирования сердца выявлено, что среди *женщин* оказалось достоверно больше доля лиц с концентрической и эксцентрической гипертрофией ЛЖ и существенно меньше – с нормальной геометрией ЛЖ, тогда как среди *мужчин* значимо больше пациентов с нормальной геометрией ЛЖ (рис. 1).

Означает ли это, что раннее ремоделирование сердца у женщин более неблагоприятно, чем у мужчин?

При исследовании индексов ремоделирования ЛЖ было выявлено превалирование ИММЛЖ у мужчин (табл. 3). Однако, при индексации ММЛЖ на рост^{2,7} различий не выявлено.

В таблице 3 представлены данные сравнения ИР в исследованных группах. Несмотря на большее количество лиц с нормальной геометрией ЛЖ среди мужчин, по сравнению с женщинами у них оказался статистически значимо выше МСс (128,92 (118,61; 142,76) и 123,73 (112,25; 136,91).

соответственно, p=0,01) и ИСд (0,65 (0,61; 0,71) у мужчин и 0,63 (0,6; 0,68) у женщин p=0,03). Данные изменения геометрии и напряжения стенки ЛЖ отражают дезадаптивные тенденции ремоделирования ЛЖ в виде уменьшения фВ/МСс и ФВ/МСд (табл. 3), отражающих адекватность нагрузки на стенку ЛЖ при формировании выброса.

Заключение

Таким образом, в нашем исследовании выявлена меньшая частота развития эксцентрической и концентрической гипертрофии ЛЖ у мужчин с артериальной гипертензией. Однако, раннее ремоделирование ЛЖ у мужчин имеет более неблагоприятный характер. Повышение систолического миокардиального стресса, увеличение индекса диастолической сферичности, дезоптимизации соотношения фракции выброса и миокардиального стресса являются проявлениями раннего дезадаптивного ремоделирования ЛЖ у мужчин с артериальной гипертензией, до формирования гипертрофии миокарда, систолической и диастолической дисфункции ЛЖ. При стандартном ЭХОКГ обследовании данные изменения не выявляются.

Таблица 1 Клинико-демографические показатели и ЛС исследуемых групп

· · · · · · · · · · · · · · · · · · ·	Группа 1	Группа 2	ρ, χ²
Возраст	43,94±10,13	44,44±11,32	0,13
Степень АГ	1,58±0,76	1,59±0,75	0,89
OT	84,37±13,21	89,11±10,9	0,15
САД, мм рт.ст.	157,31±19,33	153,91±19,23	0,08
ДАД, мм рт.ст.	94,33±10,44	94,33±11,41	0,44
ИМТ, кг/м ²	26,82±4,14	26,99±3,2	0,41
ЛПВП, моль/л	1,36±0,47	1,24±0,41	<0,001
Индекс атерогенности,	3,27±1,53	3,59±1,68	0,01
ед.	3,27-1,55	3,3321,00	0,01

Таблица 2 Параметры общей гемодинамики по данным СМАД у пашиентов исследованных групп.

	Группа 1	Группа 2	<u>P</u>
Dls	11,25±6,95	13,67±6,37	<0,001
Dld	15,96±7,61	19,08±8,79	<0,001
мп АДс	132,48±18,5	136,14±15,1	0,08
мп АДд	83,04±11,66	88,71±9,23	0,07
мпЧСС	73,74±14,06	73,29±12,34	0,99
Адср.ѕ	134,69±16,28	138,29±10,66	0,09
АД ср.d	79,76±9,12	83,23±7,8	0,06
ЧСС ср	77,62±9,41	76,65±8,87	0,13

Таблица 3 Структурно-геометрические особенности левого желудочка у пациентов исследованных групп

	Группа 1	Группа 2
КДО, мл	103,26±18,53	116,63±18,78*
КСО, мл	32,71±10,18	39,4±11,37*
УО, мл	70,14±13,09	76,67±14,68*
Нс, мм	61,78±6,5	66,28±6,27*
Нд, мм	71,41±7,1	78,02±7,37*
КСР, мм	28,54±2,9	31,02±2,99*
КДР, мм	46,88±3,26	49,4±3,45*
ФВ, %	68,86±4,81	67,07±4,59*
МЖП д, мм	8,91±1,57	9,75±1,47*
ТЗС ЛЖд, мм	9,2±1,41	9,91±1,27*

ТЗС ЛЖс, мм	14,89±1,79	15,63±1,86*
ETe, MC	221,3±45,04	225,67±47,55
ET a, MC	147,86±26,63	157,02±38,16
IVRT, MC	79,93±17,46	82,4±19,97
DecT, MC	200,56±38,66	201,04±39,46
Е/А, ед.	1,08±0,66	1,01±0,38
ммлж, г	177,62 (152,06; 204,8)	225,77 (190,83; 249,73)*
ИММЛЖ/ППТ, г/м²	100,39 (88,73; 115,44)	110,13 (95,72; 125,95)*
ИММЛЖ/рост ^{2,7} , г/м ^{2,7}	46,99 (42,23; 53,65)	48,34 (41,41; 55,63)
ИСс, ед.	0,46 (0,43; 0,5)	0,47 (0,43; 0,51)
ИСд, ед.	0,63 (0,6; 0,68)	0,65 (0,61; 0,71)*
МСс, дин/см²	123,73 (112,25; 136,91)	128,92 (118,61; 142,76) *
МСд, дин/см²	159,47 (142,38; 180,03)	164,97 (147,62; 182,25)
КДД, мм рт.ст.	11,51 (8,32; 14,87)	12,7 (8,85; 14,68)
КДНС, дин/см ²	14,61 (11,06; 19,7)	14,48 (11,8; 19,63)
ИСИР, ед.	106,06 (97,82; 114,41)	106,27 (98,09; 115,15)
ИДИР, ед.	303,68 (259,13; 352,7)	310,25 (271,7; 368,67)
ОТС, ед.	0,39 (0,34; 0,43)	0,4 (0,36; 0,44)
КДОИ, мл/м ²	57,74 (51,32; 66,2)	59,01 (51,43; 67,09)
КСО И , мл/м²	18,16 (15,47; 20,66)	19,26 (16,24; 23,49)
МСс/КСОИ, ед.	6,86 (6,03; 7,82)	6,62 (5,84; 7,66)
МСд/КДОЙ, ед.	2,73 (2,44; 3,1)	2,81 (2,48; 3,08)
ФВ/МСс, ед.	0,55 (0,49; 0,63)	0,51 (0,46; 0,6)*
ФВ/МСд, ед.	0,43 (0,37; 0,48)	0,41 (0,36; 0,45)*

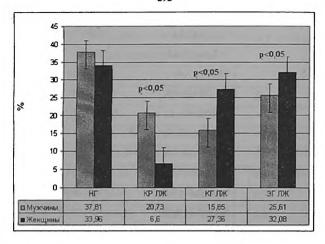


Рисунок 1. Распределение типов геометрии ЛЖ у пациентов исследованных групп.

ВЛИЯНИЕ ГИПЕРСИМПАТИКОТОНИИ НА СТРУКТУРУ И ФУНКЦИЮ СЕРДЦА ЗДОРОВЫХ ЛИЦ

Хурс Е.М., Евсина М.Г., Поддубная А.В., Смоленская О.Г.

Вегетативная нервная система (ВНС) играет важную роль в функционировании всего организма и сердечно – сосудистой системы (ССС), в частности. Одним из современных методов оценки состояния вегетативной регуляции ССС является анализ вариабельности ритма сердца (ВРС) [1, 2, 3, 4].

Физиологические механизмы анализа ВРС основаны на том, что последовательный ряд кардиоинтервалов отражает регуляторные влияния на синусно-предсердный узел сердца различных отделов ВНС — симпатической (СНС) и парасимпатической (ПСНС) [5]. У здоровых влияние обоих отделов