МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ГБОУ ВПО УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ

ТЕЛЕШЕВ В.А., АНДРЕЕВА А.В., КРОХАЛЕВ В.Я., СОКОЛОВ С.Ю., РЕЗАЙКИН А.В.

МЕДИЦИНСКАЯ ИНФОРМАТИКА

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ ПО МЕДИЦИНСКОЙ ИНФОРМАТИКЕ

> Екатеринбург 2015

Телешев В.А., Андреева А.В. и др. Медицинская информатика. Учебнометодическое пособие к практическим занятиям по медицинской информатике,-Екатеринбург: Изд. УГМУ, 2015. – 122 с.

ISBN - 978 - 5 - 89895 - 716 - 2

В данное пособие включены практические работы для освоения современных компьютерных технологий в приложении к решению задач медицины. Программной поддержкой данного пособия, предназначенного для практических занятий по курсу, являются программы «Mstat», «Pulmo» и «WrArchiv» созданные сотрудниками управления образовательных информационных технологий УГМУ. В создании программ, кроме авторов принимали участие программисты управления Назыров А.Г. и Бареева Л.Г.

Пособие рассчитано на студентов медицинских вузов, изучающих курс медицинской информатики.

Ответственный редактор профессор Бляхман Ф.А.

Рецензенты: д.м.н. Санников А.Г. д.м.н. профессор Ножкина Н.В.

ISBN - 978 - 5 - 89895 - 716 - 2

©УГМУ, 2015

ОГЛАВЛЕНИЕ

ПРЕДИСЛОВИЕ. ПРИГЛАШЕНИЕ В МЕДИЦИНСКУЮ ИНФОРМАТИКУ5
1. ОСНОВНЫЕ ПОНЯТИЯ АНАЛИЗА МЕДИЦИНСКИХ ДАННЫХ
ИНФОРМАТИКИ11
Лабораторная работа № 1. Первичная статистическая обработка данных медицинского эксперимента
Лабораторная работа № 2. Проверка гипотезы о нормальности распределения случайной величины с помощью критерия согласия Пирсона в Excel
1.2 ПРИМЕНЕНИЕ СПЕЦИАЛИЗИРОВАННЫХ ПРОГРАММ В РЕШЕНИИ ЗАДАЧ
МЕДИЦИНСКОЙ ИНФОРМАТИКИ23
Лабораторная работа № 3. Расчет статистических характеристик конечных выборок 23
Лабораторная работа № 4. Непараметрические критерии
Лабораторная работа № 5. Параметрические критерии
Лабораторная работа № 6. Расчет коэффициента парной линейной корреляции
Лабораторная работа № 7. Расчет коэффициентов аппроксимирующих формул
Лабораторная работа № 8. Расчет непараметрического рангового коэффициента корреляции по Спирмену
Лабораторная работа № 9. Расчет дифференциальной информативности функционального параметра
Лабораторная работа № 10. Оценка тяжести состояния организма по функциональным параметрам
2. БАЗЫ ДАННЫХ В ИНФОРМАЦИОННЫХ МЕДИЦИНСКИХ СИСТЕМАХ
Лабораторная работа № 11. Базы данных медперсонала с применением СУБД MS «Access»
Лабораторная работа № 12. Составление запросов и отчетов
3. ИНФОРМАЦИОННЫЕ МЕДИЦИНСКИЕ СИСТЕМЫ
Лабораторная работа № 13. Автоматизированная консультативная система диагностики бронхо-легочных заболеваний
Лабораторная работа № 14. Дифференциальная диагностика по формуле Байеса 58
Лабораторная работа № 15. Автоматизированное рабочее место подготовки медико- статистических данных
4. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ИНТЕРНЕТ – РЕСУРСЫ В ЗДРАВООХРАНЕНИИ71
Лабораторная работа № 16. Основы Internet
Лабораторная работа № 17. Поиск мед. публикаций в базе данных "MedLine"
5. УИРС
РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА
ПРИЛОЖЕНИЕ
Описание программы <i>MStat</i>
Таблица № 1. Критические значения коэффициентов Стьюдента <i>t</i>

Габлица № 2. Критерий знаков	101
Габлица № 3. Критические значения Q-критерия Розенбаума	102
Габлица № 4. Критические точки распределения χ ²	103
Габлица № 5. Критические значения коэффициента ранговой корреляции Спирмена	103
Габлица № 6	104
Габлица № 7	105
Габлица № 8	108
Габлица № 9	110
Габлица № 10	117
Габлица № 11	118
Примерные тестовые вопросы по курсу «Медицинская информатика»	119

Предисловие

Приглашение в медицинскую информатику

Данное учебно-методическое пособие посвящено одной из наиболее быстро развивающихся в настоящее время наук – медицинской информатике. Если вы студент высшего медицинского учебного заведения или врач, то это пособие для вас.

Попытки обучать будущих медиков использованию информационных технологий в медицине начались еще в конце 70-х годов, когда на втором курсе был введен предмет «Медицинская кибернетика». Это произошло в основном благодаря тому, что в 1974 году во Втором московском медицинском институте была создана кафедра медицинской кибернетики и ее организатор профессор С.А. Гаспарян был страстным поклонником этой науки, как, впрочем, и многие другие ученые. Однако видимо поняв, что преподавать данный предмет на втором курсе студентам-медикам рановато, в конце 80-х годов он был из программы убран, зато на первом курсе появился новый предмет, названный «Информатика» и который к медицине никакого отношения не имел.

В практику информационных современной медицине внедрение В технологий идет огромными темпами: разрабатываются И внедряются медицинские информационные системы, системы компьютерной диагностики, телемедицинские системы, во многих медицинских учреждениях используются локальные компьютерные сети с ведением общих баз данных и т.д. Поэтому уже в 2002 году во всех медицинских вузах страны был введен курс «Медицинская информатика», а в новом государственном образовательном стандарте, который введен с 2011 года, количество часов на изучение медицинской информатики увеличено практически в три раза, что соответствует современным тенденциям развития медицины.

Также в новом государственном стандарте среди профессиональных компетенций, которыми должен обладать врач есть «способность и готовность использовать соответствующий математический аппарат в ходе

профессиональной деятельности». Более того в умениях, которыми должен обладать выпускник _ медик есть фраза «должен уметь проводить статистическую обработку экспериментальных данных». Но дальше не ясно – в рамках какого курса студенты должны овладевать данными умениями. Урезанный курс физики и математики этого сделать не позволяет. В курсе организации здравоохранения изучают медицинскую статистку, но это другой предмет. А умения применять статистические методы необходимы многим студентам уже начиная со второго курса, поэтому мы ввели в рабочую программу медицинской информатики математической обработки элементы статистики лля экспериментальных медицинских данных.

Данные для обработки приведены в таблицах в приложении к данному методическому пособию. На каждом занятии преподаватель дает свой вариант каждому студенту. Это может быть, например, общий белок крови в норме и при гепатите, связанный холестерин в норме и при себорее и т.д. По этим данным студенты рассчитывают средние значения параметров, среднеквадратичное отклонение, погрешность среднего значения, доверительный интервал, строят гистограммы и делают вывод о нормальности распределения, определяют различия выборок по Стьюденту. В другой таблице приведены данные для двух параметров разных пациентов, например, вес щитовидной железы и площадь ее стенографического изображения, объем циркулирующей крови и рост и т.д. По экспериментальным рассчитывают коэффициент ЭТИМ данным, студенты корреляции Пирсона, записывают уравнение регрессии.

Для малых выборок изучаются непараметрические критерии статистики, такие как критерий Розенбаума для определения различий и критерий ранговой корреляции Спирмена для определения связи между выборками.

Расчеты производятся с помощью программы Mstat, созданной сотрудниками Управления инновационных информационных технологий УГМУ и в Excel.

Для проверки полученных знаний, навыков работы на компьютере, умения самостоятельно проводить статистическую обработку медико-биологических

данных на двух последних занятиях в конце весеннего семестра 2014 года студенты выполняли задание (УИРС) по теме «Корреляционный и регрессионный анализ двух связанных выборок».

В работе использовалась программа Excel, в которой наряду с обычными встроенными функциями применялся пакет анализа статистических данных, включающий «Описательные статистики», «Гистограммы» и др. Отчет по работе оформляется в текстовом редакторе Word.

Во второй части данного методического пособия приведены работы, связанные с использованием информационных технологий лля решения различных задач медицинской практики. Это создание медицинской базы данных с помощью Access, расчет дифференциальной информативности функциональных оценка тяжести состояния организма по функциональным параметров, работа автоматизированной консультативной системой параметрам, c диагностики бронхо-легочных заболеваний, работа с автоматизированным рабочим подготовки медико-статистических местом данных, работа С диагностической системой на основе алгоритма Байеса, а также работа по поиску медицинских данных в «Medline».

Авторы надеются, что данное учебно-методическое пособие станет важным элементом в освоении курса медицинской информатики для студентов медицинских вузов, а также может быть использовано врачами для повышения своей информационной культуры.

1. Основные понятия анализа медицинских данных

Более века назад российская биомедицина занимала передовые позиции в использовании статистики. Активными сторонниками приложения статистики к областям медицины были Н.И. Пирогов, В.А. Манассеин и др. В период гонений на кибернетику и генетику статистика была исключена из биологии и медицины, что привело к значительному отставанию отечественной биостатистики от зарубежного уровня (см. статью на http://www.biometrica.tomsk.ru/ – «История биометрики и ее применения в России»). На сегодняшний день в связи с развитием доказательной медицины интерес российских медиков К статистическим повысился. Основными методам значительно задачами медицинской статистики, являются разработка специальных методов исследования массовых процессов и явлений в медицине и здравоохранении; выявление наиболее существенных закономерностей и тенденций в здоровье населения в целом и в различных его группах; во взаимосвязи с конкретными условиями и образом жизни; изучение и оценка состояния и динамики развития деятельности учреждений здравоохранения и медицинских кадров.

На практике, как правило, медико-биологические данные являются результатом совокупности наблюдений (десятки, сотни, тысячи результатов измерений индивидуальных характеристик) над некоторой случайной величиной. Поэтому возникает задача компактного описания имеющихся данных. Для этого используют методы *описательной статистики* – описания результатов с помощью различных показателей и графиков, для наглядного представления и первичного анализа результатов измерений. Идея описательных статистик очень проста – дать общее представление о значениях, которые принимает переменная¹. К таким показателям и графикам относятся: гистограмма распределения вариационного ряда выборки², минимум и максимум, среднее, дисперсия,

¹ **Переменная** – (англ. Variable) – количественно измеренное свойство или признак, принимающие различные значения, имеет способность изменяться. Например, измеряя температуру, давление, содержание лейкоцитов в крови, получаем разные значения у разных пациентов.

² Выборка (выборочная совокупность) – это группа объектов или ограниченное число элементов из изучаемой генеральной (большой) совокупности. *Генеральная совокупность* представляет собой неограниченный массив данных одной категории.

среднеквадратичное отклонение, стандартная ошибка, мода, медиана, эксцесс, асимметрия.

Начнем с самых простых и важных понятий анализа данных.

Минимум и максимум – это минимальное и максимальное значение переменной.

Мода (Мо) – наиболее часто встречающееся значение переменной.

Медиана (Me) – значение, которое делит упорядоченное множество данных (ранжированный ряд) на две равные части. Медиана – среднее значение ранжированного ряда. Если число значений нечетное, то медиана соответствует среднему члену ряда, если четное, то медиана есть среднее между двумя центральными значениями.

Среднее арифметическое значение, или просто среднее (\overline{x}), равно сумме переменных, деленной на их число. Для не сгруппированных переменных среднее арифметическое вычисляется по формуле:

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i$$

Для сгруппированных переменных можно воспользоваться другой формулой – среднее будет соответствовать сумме произведений средних значений каждого класса и частоты встречаемости значения признака в данном классе:

$$\bar{x} = \frac{x_1 f_1 + x_2 f_2 + \dots + x_n f_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i f_i$$

Две выборочные совокупности могут иметь одинаковые или близкие между собой средние значения признака и в то же время существенно различаться по степени вариабельности (вариативности) этого признака. Для определения меры изменчивости исследуемого параметра наиболее часто используют такие величины, как дисперсия и стандартное отклонение, коэффициент вариации и др.

Среднее отклонение (S) – параметрическая мера изменчивости. Среднее отклонение равно сумме отклонений от среднего значения (или, другими словами, сумме расстояний между x_i и \bar{x}), взятых по модулю:

$$S = \frac{|x_1 - \bar{x}| + |x_2 - \bar{x}| + \dots + |x_n - \bar{x}|}{n} = \frac{\sum_{i=1}^n |x_i - \bar{x}|}{n}$$

Дисперсия (D) – мера разброса данных относительно среднего значения, представляет собой сумму квадратов отклонений от среднего (сумму квадратов расстояний между x_i и \bar{x}):

$$D = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{n - 1} = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n - 1}$$

Деление суммы квадратов на число степеней свободы n - 1 позволяет сравнивать между собой совокупности, различные по объему. Считается, что дисперсия – более мощный статистический критерий, нежели среднее отклонение, так как больший вклад в дисперсию дают те значения признака, которые расположены дальше от среднего (вклад каждого значения в дисперсию возрастает пропорционально квадрату отклонения от среднего).

Эту формула не очень удобно использовать при расчете дисперсии вручную. Поэтому для этих целей можно использовать другую (рабочую) формулу, которую можно получить путем соответствующих преобразований:

$$D = \frac{n \sum x_i^2 - (\sum x_i)^2}{n(n-1)}$$

Стандартное отклонение (σ) соответствует квадратному корню из дисперсии. Наряду с дисперсией является одной из наиболее часто используемых мер вариабельности признака.

$$\sigma = \sqrt{D}$$

Коэффициент вариации (V) есть отношение стандартного отклонения к среднему арифметическому значению, выраженное в процентах:

$$V = \frac{\sigma}{\bar{x}} \cdot 100\%$$

Если $V \le 5\%$ – данные отличные; $5\% \le V \le 15\%$ – данные хорошие; $15\% \le V \le 30\%$ – данные удовлетворительные; V > 30% – данные неудовлетворительные.

1.1 Применение электронных таблиц Excel в решении задач медицинской информатики

Важнейшими техническими средствами медицинской статистики является современная вычислительная техника. Все программы статистической обработки данных можно разделить на профессиональные, полупрофессиональные (популярные) и специализированные. Профессиональные пакеты имеют большое количество методов анализа, популярные пакеты – количество функций, достаточное для универсального применения. К таким программам относятся: STATISTICA (производителем программы является фирма StatSoft Inc CША http://www.statsoft.com/), JMR (SAS Institute http://www.jmp.com/). К не менее профессиональным, но более популярным, программным статистическим пакетам, которые могут применяться для биомедицинских целей, можно отнести STATA (http://www.stata.com/); SPSS (Statistical Package for Social Science http://www.spss.com/); **STATGRAPHICS** (http://www.statgraphics.com/). Специализированные же пакеты ориентированы на какую-либо узкую область анализа данных. Например, **PRISM** – эта программа создавалась специально для биомедицинских целей. Однако, как отмечают сами разработчики, программа не может полностью заменить серьезных статистических пакетов (http://www.graphpad.com/).

Статистические программы относятся к наукоемкому программному обеспечению, цена их часто недоступна индивидуальному пользователю.

Однако для предварительных статистических расчетов и «прикидок», накопления данных, промежуточных преобразований, для построения некоторых видов диаграмм можно воспользоваться пакетом офисных программ компании Microsoft – **MS Excel**. Окончательный статистический анализ необходимо делать в программах, которые специально созданы для этих целей. Существует макросдополнение **XLSTAT-Pro** (http://www.xlstat.com/) для MS Excel который, включает в себя более 50 статистических функций для биомедицинских целей, в

том числе и анализ выживаемости. Пробную версию макроса можно взять на сайте производителя – http://www.microsoft.com/.

При выполнении какого-либо исследования почти всегда потребуется вводить данные в прикладной пакет программ, основанный на заполнении электронных таблиц. С помощью этого пакета вы можете проверить правильность данных, ускорить сбор данных и анализ. Первое, что захочется сделать после ввода информации – это обобщить данные, таким образом, чтобы можно было их «ощутить». Рассмотрим одну из основных задач математической статистики – первичную статистическую обработку данных, и ее решение с помощью среды Excel.

Лабораторная работа № 1.

Первичная статистическая обработка данных медицинского эксперимента

Рассмотрим пример первичной статистической обработки дискретной случайной величины в Excel, статистические данные заданы в виде выборки $x_1, x_2, ..., x_n$. Алгоритм исследования непрерывной случайной величины аналогичен, но требует внесения незначительных изменений.

Данная задача решается с помощью статистических процедур Анализа данных и пакета библиотеки встроенных статистических функций Excel, при работе с которыми необходимо проверить их доступность.

Если Анализ данных во вкладке Данные не доступен, его нужно предварительно подключить:

• для версии Microsoft Office Excel 2007 используйте кнопку Office. Выбрать с помощью кнопки Параметры → команду Настройки → Управление надстройки excel → Анализ данных.

• для версии Microsoft Office Excel 2010 (/13) используйте вкладку Файл → Параметры → Надстройки → Управление надстройками Microsoft Office → внизу страницы в пункте Управление в раскрывающемся списке выбрать Надстройки excel → нажать кнопку Перейти → поставить галочку в

пункте Пакет анализа → ОК. После этого во вкладке Данные появится функция Анализ данных.

Пример первичной статистической обработки данных

У 60 новорожденных измерили массу тела. Результаты (в кг) таковы:

3,70	3,71	3,60	4,20	3,33	2,80	4,03	4,18	4,75	4,10
3,75	3,75	3,80	3,25	3,55	2,50	3,20	3,95	3,88	3,15
3,38	4,15	3,50	3,72	4,15	3,00	3,75	3,55	4,03	4,05
4,22	3,58	4,08	3,24	3,56	3,75	3,98	4,05	3,80	4,38
3,58	3,78	3,40	3,07	4,20	3,50	3,35	3,64	3,05	4,50
3,85	3,78	4,45	3,87	3,76	3,68	3,81	4,50	3,88	3,65

1. Определим основные выборочные характеристики ряда.

Для того чтобы определить основные выборочные характеристики ряда воспользуемся готовым пакетом **Анализ данных** и с помощью процедуры **Описательная статистика** найдем необходимые показатели ряда.

1.1. Введем данные в столбец А (ячейки А1:А60, так как у нас 60 значений параметра).

1.2. В меню во вкладке Данные вызовем процедуру пакета Анализ данных. В открывшемся диалоговом меню выделим процедуру Описательная статистика. В поле Входной интервал диалогового окна Описательная

Рис. 1. Выборочные характеристики ряда.

статистика введем ссылку на диапазон A1:A60, в котором находятся значения исследуемой выборки. Выберем параметры для вывода информации. И

поставим галочку в поле **Итоговая статистика** для вывода таблицы с основными характеристиками ряда.

2. Построение гистограммы с помощью Excel.

Очень важным этапом исследования является *визуализация данных*. Визуализируя данные, вы выдвигаете гипотезы, которые невозможно было бы сформулировать, имея только численные представления.

Гистограмма – это способ представления данных в графическом виде – в виде столбчатой диаграммы. Она отображает распределение отдельных измерений параметров или процессов. Гистограмму также называют частотным распределением, так как она показывает частоту появления измеренных значений параметров. Высота каждого столбца указывает на частоту появления значений параметров в выбранном интервале, а количество столбцов – на число выбранных интервалов. Частотность событий указывается по вертикальной оси, а интервалы, указываются по горизонтальной оси.

Чем полезна гистограмма?

Не всегда легко просмотреть измеренные данные и проанализировать их. Гистограмма может предоставить информацию о степени разнородности данных и указать образец распределения. Рисуя кривую линию по верхушкам полосок гистограммы, мы можем получить общую картину.

Гистограмма позволяет наглядно представить тенденции изменения измеряемых параметров объекта и зрительно оценить закон их распределения. Кроме того, гистограмма дает возможность быстро определить центр, разброс и форму распределения случайной величины.

Представленная на рисунке 2 гистограмма имеет форму нормального распределения, что говорит о стабильности процесса, но часто бывает, что форма распределения отклоняется от нормального. Это свидетельствует о

Рис. 2. Пример гистограммы.

каких-либо отклонениях.

Некоторые, часто встречающие отклонения и их причины представлены на рис. 3.

Для построения гистограммы распределения вариационного ряда выборки, необходимо ранжировать вариационный упорядочить ряд, т.е. ряд OT минимального максимального значения, И найти диапазон изменения ДО параметра.

графически Представим наши данные примера ИЗ С весом тела новорожденных. Построим гистограмму:

2.1. В меню Данные выделим строку Анализ данных. В открывшемся диалоговом меню выделим процедуру Гистограмма. В поле Входной интервал диалогового окна Гистограмма введем ссылку на диапазон А1:А60, в котором находятся значения исследуемой выборки. Выберем параметры для вывода информации. И поставим галочку в поле Вывод графика для вывода гистограммы (Рис. 4).

	Гистограмма		2 	,
Входные данные			OK	
В <u>х</u> одной интервал:	\$A\$1:\$A\$60	Esta		_
И <u>н</u> тервал карманов:		55	Отмена	
<u>М</u> етки	L		<u>С</u> правка	
Параметры вывода				
Выходной интервал:	\$D\$2	1		
Новый рабочий <u>л</u> ист:				
О Новая рабочая книга				
Парето (отсортированная ги	истограмма)			
Интегральный процент				
Вывод графика				

Рис. 4. Диалоговое меню «Гистограмма».

2.2. Удалим гистограмму и поправим границы карманов (название интервалов в Excel). Правой границей первого кармана будет число 2,82, поэтому уберем из таблицы первую строку, а частоту попадания в первый карман исправим на 2. Слово «Еще» заменим на 4,75 (наибольшее значение в выборке). Получим:

Карман	Частота
2,82	2
3,14	3
3,46	8
3,79	21
4,11	15
4,43	7
4,75	4

2.3. Теперь построим гистограмму, используя полученные значения правых границ карманов. Для этого повторим действия п. 2.1 с той лишь разницей, что мы зададим величину карманов сами по нашей табличке. Получим гистограмму, показанную на рис.5.

Рис. 5. Графическое представление статистического ряда выборки.

Визуально распределение параметра похоже на нормальное, но окончательный вывод можно сделать, используя точные критерии (см. лаб.р.№ 2).

3. Построение гистограммы для небольших выборок вручную.

Допустим, что у нас имеется числовой ряд данных (например, рост 36 служащих в дюймах).

Служащий	h высота (дюйм)	Служащий	h высота (дюйм)	Служащий	h высота (дюйм)	Служащий	h высота (дюйм)
ТК	64	СТ	69	ОП	68	BP	65
ВШ	63	PM	71	PC	72	MH	61
ОК	66	PT	73	ШС	75	КА	66
ВД	73	TM	62	PC	76	ДП	76
ТΓ	60	CA	70	3П	69	EB	73
ВЛ	67	РИ	65	AC	70	PE	74
ГП	76	КЕ	69	ПА	66	ДП	72
BA	73	ВИ	70	ТР	68	ЛВ	70
AB	65	РФ	63	СМ	72	ЮС	70

Чтобы построить гистограмму необходимо:

3.1. Определить минимальное и максимальное значение высоты служащих:

МИН = 60 (дюйм); МАКС = 76 (дюйм).

3.2. Выбрать количество интервалов для построения гистограммы. Этот выбор зависит от количества данных. Чем большее количество членов в выборке,

тем большее количество интервалов можно выбрать и тем достовернее будет построенная гистограмма. Лучше, чтобы их было не меньше пяти.

Допустим, мы выбрали для нашего числового ряда пять интервалов, далее определяем длину интервала. Для этого делим разность между максимальным и минимальным значениями на число интервалов и получаем длину интервала

$$l = \frac{MAKC - MИH}{h} = \frac{76 - 60}{5} = 3.2$$
 (дюйм)

3.3. Подсчитать число попаданий значений результатов измерений в каждый из интервалов.

3.4. Построить гистограмму. На оси абсцисс отметить интервалы, на оси ординат отметить число попаданий результатов измерений в каждый интервал. В результате получим столбчатую диаграмму, представленную на рисунке 6.

Рис. 6. Гистограмма роста служащих.

По виду гистограммы можно сделать вывод, что распределение не является нормальным, т.к. гистограмма распределения не симметрична и имеется перекос в сторону более высоких служащих.

Также гистограммы можно строить с помощью специализированных статистических программ.

Порядок выполнения

Статистические данные заданы в виде выборки x₁, x₂, ..., x_n.

Провести первичную статистическую обработку данных:

- 1. Согласно указанному преподавателем варианту из таблицы 6 (см. приложение, стр. 104), записать в отчет выборку значений параметра.
- 2. Используя Excel, ввести значения параметра в диапазон A1:A30.
- 3. Определить основные выборочные характеристики ряда.
- 4. Построить гистограмму распределения вариационного ряда с помощью Excel.
- 5. Построить гистограмму распределения вариационного ряда вручную.
- 6. Перенести полученные результаты в отчет, сделать выводы.

Лабораторная работа № 2.

Проверка гипотезы о нормальности распределения случайной величины с помощью критерия согласия Пирсона в Excel.

Очень часто при обработке статистических данных возникает ситуация, когда закон распределения совокупности не известен заранее, однако это можно установить, сравнив гистограмму с известными кривыми функций плотностей. Например, если гистограмма имеет один ярко выраженный пик, то можно предположить, что исследуемая генеральная совокупность распределена по нормальному закону $N(\bar{x}, \sigma)$, т.е. имеет плотность

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-m)^2}{2\sigma^2}}.$$

Рис. 7. Функция плотности нормального распределения.

Если гистограмма представляет собой «убывающие ступеньки прямоугольников», то генеральная совокупность может быть распределена по показательному закону:

$$p(x) = \begin{cases} 0, & x < x_0; \\ \lambda e^{-\lambda(x-x_0)}, & x \ge x_0. \end{cases}$$

Проверить гипотезу о виде распределения случайной величины можно с помощью критерия согласия Пирсона χ^2 . Статистический критерий согласия – решающее правило (предположение), о соответствии эмпирического ЭТО распределения (экспериментального) теоретическому распределению, обеспечивающее принятие истинной и отклонение ложной гипотезы с высокой вероятностью. Решение о соответствии экспериментального распределения теоретическому распределению принимается при сравнении экспериментального значения χ^2 и критического значения (табличного) $\chi^2_{\rm kp.}$ при соответствующем числе степеней свободы с заданным уровнем значимости. Число степеней свободы случайной величины при проверке гипотезы 0 нормальном распределении v = N - 3, где N – число карманов (интервалов).

• Если $\chi^2 < \chi^2_{\kappa p}$, то гипотеза о виде распределения принимается на уровне значимости *p*, т.е. экспериментальное распределение статистически не отличается (соответствует) от теоретического распределения при уровне значимости *p*.

• Если $\chi^2 > \chi^2_{\rm kp}$, тогда экспериментальное распределение статистически отличается (не соответствует) от теоретического распределения при уровне значимости *p*.

Рассмотрим пример из предыдущей лабораторной работы о массе тела новорожденных и проверим гипотезу о распределении случайной величины *по нормальному закону распределения*. Для простоты расчетов заполним таблицу.

Выборочные значения	Частота выборочного значения	НОРМРАСП	Теоретическая вероятность выборочного значения	Теоретическая частота выборочного значения	Вычисляемая величина
1	2	3	4	5	6
<i>x_i</i> (Карман)	<i>f</i> ₃ (Частота)	НОРМРАСП	p_i	$f_{\mathrm{T}} = n \cdot p_i$	$\frac{(f_{\scriptscriptstyle \Im} - f_{\scriptscriptstyle \mathrm{T}})^2}{f_{\scriptscriptstyle \mathrm{T}}}$

• Первый (выборочные значения) и второй (частота выборочного значения) столбцы перепишем из полученной нами ранее предыдущей таблицы (см. стр.16). Оставшиеся столбцы рассчитаем по приведенным формулам и встроенным функциям.

• Воспользуемся встроенной функцией **НОРМРАСП**($x_i, \bar{x}, \sigma, 1$), где \bar{x}, σ – выборочное среднее значение и стандартное отклонение, вычисленные ранее (рис. 1); 1 – истина. Вычислим значения функции распределения для x из 1-го столбца. Разность значений функции распределения на правом и левом краю кармана определяет теоретическую вероятность попадания значения нормально распределенной случайной величины в соответствующий карман. Среднее и стандартное отклонение берем из таблицы «Описательные статистики» (рис. 1).

• Вычислим теоретическую вероятность попадания случайной величины в карман по числам 3-го столбца. Первая вероятность совпадает с числом в первой строке. Вторая вероятность получается из столбца 3 вычитанием числа 1-ой строки из числа 2-ой. Далее «протаскиванием» получим вероятности попадания в карманы со 2-го по 6-ой. Вероятность попадания в 7-ой карман находим вычитанием из единицы числа в 6-ой строке 3-го столбца.

• Теоретическую частоту выборочного значения находим как результат умножения значений 4-го столбца на объем выборки (n = 60):

 $f_{\rm T} = n \cdot p_i$

• Вычислим значение χ^2 Пирсона: $\chi^2 = \sum_{i=1}^k \frac{(f_3 - f_T)^2}{f_T}$ Эмпирическое значение $\chi^2_{3} = 3, 4$ получим сложением чисел 6-го столбика.

• Критическое значение хи-квадрат ($\chi^2_{\text{кр.}}$) можно найти с помощью встроенной функции ХИ2ОБР(0,05;4) для уровня значимости 0,05 (соответствует доверительной вероятности 0,95) и числа степеней свободы равному числу карманов минус 3. Получим $\chi^2_{\kappa p.} = 9,49$.

Выборочные значения	Частота выборочного значения	НОРМРАСП	Теоретическая вероятность выборочного значения	Теоретическая частота выборочного значения	Вычисляемая величина
1	2	3	4	5	6
<i>х_і</i> (Карман)	<i>f</i> э (Частота)	НОРМ.РАСП.	p_i	$f_{\rm T} = n \cdot p_i$	$\frac{(f_{\mathfrak{I}} - f_{\mathtt{T}})^2}{f_{\mathtt{T}}}$
2,82	2	0,02	0,02	0,99	1,02
3,14	3	0,08	0,07	3,99	0,24
3,46	8	0,26	0,18	10,69	0,68
3,79	21	0,54	0,28	16,86	1,02
4,11	15	0,80	0,26	15,63	0,03
4,43	7	0,94	0,14	8,53	0,27
4,75	4	0,99	0,06	3,31	0,14
	Сумма		1	60	3,40

• Примем решение о соответствии экспериментального распределения теоретическому распределению при числе степеней свободы равном 4 с уровнем значимости p = 0,05. Так как $\chi_{3.}^2 < \chi_{\kappa p}^2$, то гипотеза о распределении выборки по нормальному закону при уровне значимости p = 0,05 принимается, т.е. экспериментальное распределение соответствует нормальному закону распределения. Задача решена.

Порядок выполнения

1. Согласно указанному преподавателем варианту из таблицы 6 (см. приложение, стр. 104) записать в отчет выборку значений параметра. Используя **Excel** ввести значения параметра в диапазон **A1:A30**.

2. Построить гистограмму распределения вариационного ряда:

3. Определить основные выборочные характеристики ряда:

4. Проверить гипотезу о нормальности распределения случайной величины с помощью критерия согласия Пирсона.

4.1. Составить и заполнить таблицу.

4.2. Рассчитать вероятность выборочного значения, относительно нормального закона распределения, воспользовавшись встроенной функцией **НОРМРАСП** $(x_i, \bar{x}, \sigma, 1)$

4.3. Вычислить значение χ^2 Пирсона как сумму значений последнего столбца, которое является наблюдаемым значением случайной величины χ^2 . Число степеней свободы этой случайной величины при проверке гипотезы о нормальном распределении v = h - 3, где h – число интервалов.

4.4. Определить критическое значение случайной величины χ^2 с помощью таблицы 4 (см. приложение, стр. 103) «Критические точки распределения $\chi^2_{\rm kp}$ » для уровня значимости 0,05 и вычисленного числа степеней свободы.

4.5. Полученное наблюдаемое значение χ^2 сравнить с $\chi^2_{\kappa p}$.

5. Записать полученные значения в отчет и сделать вывод.

1.2 Применение специализированных программ в решении задач медицинской информатики

Лабораторная работа № 3.

Расчет статистических характеристик конечных выборок

Для управления любым процессом, в особенности процессом лечения больного, необходима информация о том, в каком состоянии находится управляемая система. Для оценки функционального состояния организма, системы, органа в норме или при патологии используются количественные значения описывающих это состояние объективных функциональных параметров. К числу таких параметров могут относиться артериальное давление крови, минутный объем дыхания, содержание гемоглобина в крови, кислотность желудочного сока и т. д. Значение каждого параметра характеризует состояние организма.

Для определения значения конкретного параметра, свойственного организму в том или ином состоянии, необходим анализ достаточно большого числа случаев обследования соответствующих пациентов. Однако обследование даже небольшого числа пациентов позволяет составить конечную выборку

значений функционального параметра P_i (i = 1, 2, ..., n) и приближенно рассчитать её основные характеристики.

В предыдущей работе с помощью Excel были рассчитаны основные выборочные характеристики ряда, такие как среднее, стандартная ошибка, медиана, мода и т.д. Как правило, так много данных в медицинских исследованиях не требуется. Чаще всего необходимо рассчитать три основные характеристики по следующим формулам:

• выборочное среднее значение параметра –

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 (ед. измерения)

• среднее квадратичное (стандартное) отклонение –

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}} \quad (ед. измерения)$$

• средняя погрешность средней величины –

$$s = \frac{\sigma}{\sqrt{n}}$$
 (ед. измерения)

Для определения доверительных границ генеральной средней по величине доверительной вероятности **о** используется коэффициент Стьюдента **t**:

 $x = \overline{x} \pm t \cdot s$ (ед. измерения)

Значение коэффициента Стьюдента берется из таблицы 1 (см. приложение).

Порядок выполнения

 Согласно указанным вариантам из таблицы 7 (см. приложение, стр.
 105) записать в отчет состояние пациентов (норма и патология) и выборки значений параметров для двадцати пациентов.

2. Используя программу «Mstat» (см. приложение, стр. 99) ввести значения параметров и рассчитать статистические характеристики выборок. Записать в отчет полученные значения и соответствующие единицы измерения.

3. Пользуясь таблицей 1 (см. приложение, стр. 101) определить коэффициент Стьюдента для заданной доверительной вероятности $\omega=0,95$ и объеме выборок **n**=20. Можно определить данный коэффициент и в Excel с помощью встроенной функции СТЬЮДРАСПОБР(0,05;19), где 0,05 – уровень значимости, а 19 – число степеней свободы = n-1.

4. Рассчитать доверительные границы для генеральной средней по величине доверительной вероятности ω, используя коэффициент Стьюдента t. Записать полученный результат в отчет, сделать вывод о величине доверительного интервала.

5. Используя программу «Mstat» (Меню Анализ – параметр расчета гистограмма) на основе введенных ваших данных в п. 2 построить две гистограммы. Записать в отчет, сделать вывод о нормальности выборок.

Лабораторная работа № 4.

Проверка гипотезы о различии конечных выборок. Непараметрические критерии.

Для того чтобы понять идеи непараметрической статистики (термин был Wolfowitz, 1942), впервые введен следует познакомиться с идеями параметрической статистики, которая знакомит с понятием статистической значимости критерия, основанного на выборочном распределении определенной статистики. Говоря кратко, если вы знаете распределение наблюдаемой переменной, то можете предсказать, как в повторных выборках равного объема будет "вести себя" используемая статистика - т.е. каким образом она будет распределена. Пусть, например, имеется 100 случайных выборок, из одной популяции по 100 взрослых человек в каждой. Вычислим средний рост субъектов в каждой выборке, т.е. построим выборочное среднее. Тогда распределение хорошо выборочных средних можно аппроксимировать нормальным распределением (более точно, *t* распределением Стьюдента с 99 степенями свободы). Теперь представьте, что случайным образом извлечена еще одна

выборка из жителей некоего города ("Вышгород"), где, по вашим представлениям, проживают люди с ростом выше среднего. Если средний рост людей в этой выборке попадает в верхнюю 95% критическую область *t*-распределения, то можно сделать обоснованный вывод, что жители Вышгорода, действительно, в среднем более высокие (чем в целом в популяции), т.е. что это действительно город высоких людей.

В рассмотренном примере использовался тот факт, что в повторных выборках равного объемы средние значения (роста людей) будут иметь *t*-распределение (с определенным средним и дисперсией). Однако, это верно лишь, если рассматриваемая переменная (рост) имеет нормальное распределение, т.е. что распределение людей определенного роста нормально распределено.

Для многих изучаемых переменных невозможно сказать с уверенностью, что это действительно так. Например, является ли доход нормально распределенной величиной? - скорее всего, нет. Случаи редких болезней не являются нормально распределенными в популяции, число автомобильных аварий также не является нормально распределенным, как и многие переменные, интересующие исследователя.

ограничивающим применимость критериев, Другим фактором, часто основанных на предположении нормальности, является объем или размер выборки, доступной для анализа. До тех пор, пока выборка достаточно большая (например, 100 или больше наблюдений), можно считать, что выборочное распределение нормально, даже если вы не уверены, что распределение переменной в популяции, действительно, является нормальным. Тем не менее, если выборка очень мала, то критерии, основанные на нормальности, следует использовать только при наличии уверенности, что переменная действительно имеет нормальное распределение. Однако нет способа проверить ЭТО предположение на малой выборке.

Непараметрические методы разработаны для тех ситуаций, достаточно часто возникающих на практике, когда исследователь ничего не знает о параметрах исследуемой популяции (отсюда и название методов –

непараметрические). Говоря более специальным языком, непараметрические методы не основываются на оценке параметров (таких как среднее или стандартное отклонение) при описании выборочного распределения интересующей величины. Поэтому эти методы иногда также называются *свободными от параметров* или *свободно распределенными*.

Выбор непараметрического критерия для определения различий зависит от различных факторов, например – какими являются выборки: связанными или независимыми.

Связанными называются такие выборки, в которых каждому наблюдению в опыте соответствует свой контроль, так как он связан с опытом единством какихлибо условий эксперимента. Чаще всего таким контролем является исходный уровень измеряемого параметра у того же больного. Примером одного из таких критериев может быть критерий знаков.

Критерий знаков.

Критерий знаков основан на подсчете числа однонаправленных эффектов в парных сравнениях. При большом числе пар наблюдений критерий знаков весьма эффективен.

Рассмотрим его применение на примере.

При измерении общего белка крови у 20 больных гепатитом было установлено, что у 17 больных этот параметр увеличился, а у 3 уменьшился по сравнению с нормой. Необходимо установить, является ли повышение общего белка крови статистически значимым у больных гепатитом.

В таблице 2 (см. приложение) находим максимальное число менее часто встречающихся знаков изменения, при котором еще можно считать обнаруженные различия существенными при уровне значимости 0,05 и количестве членов в выборке 20. Таким максимальным числом является 5, что больше чем 3. Следовательно, по критерию знаков повышение общего белка крови у больных гепатитом является статистически значимым.

Порядок выполнения

- Согласно указанным вариантам из таблицы 8 (см. приложение, стр. 108) записать в отчет состояние пациентов («До» и «После») и выборки значений параметров для двадцати пациентов.
- 2. Сравнить попарно значения параметров «До» и «После» для всех 20 пациентов, записать сколько раз параметр возрастает и сколько убывает.
- 3. В таблице 2 (см. приложение, стр. 101) найти значение критерия знаков для уровня значимости 0,05 и количества членов в вашей выборке.
- 4. Сравнить значение критерия с меньшим значением, найденным в пункте 2 и сделать вывод о различии выборок.
- 5. Записать полученный результат в отчет.

Критерий *Q* Розенбаума.

Другая группа непараметрических критериев применяется в случае, когда изучаемые выборки являются независимыми. Примером такого критерия является критерий Розенбаума.

Критерий Розенбаума основан на сравнении двух рядов наблюдений в общем упорядоченном ряду. Будем называть первым из двух сравниваемых рядов тот, где максимальная и минимальная величины больше, чем в другом ряду.

1. Подсчитывают число Q_1 и Q_2 , где Q_1 – количество наблюдений первого ряда, которые больше максимальной величины второго ряда, Q_2 – количество наблюдений второго ряда, которые меньше минимальной величины первого ряда

2. Находят сумму $Q = Q_1 + Q_2$

3. Сравнивают полученное значение *Q* с табличным значением и делают вывод о различии выборок.

Рассмотрим небольшой пример:

Сравнить тах артериальное давление в мм. рт. ст. у детей с разными по тяжести угрожающими состояниями. Первая группа – дети с более легкими

угрожающими состояниями, лечившиеся в отделениях общего типа. Вторая группа – дети с более тяжелыми угрожающими состояниями, лечившиеся в реанимационных отделениях и выздоровевшие.

 1-й ряд
 95
 100
 105
 105
 110
 115
 120 130 135

 2-й ряд
 75 80 85 90 95
 100
 105
 110
 115
 110
 130
 135

Находим Q_1 = 3 и Q_2 = 5

где Q_1 – количество наблюдений первого ряда, которые больше максимальной величины второго ряда,

*Q*₂ – количество наблюдений второго ряда, которые меньше минимальной величины первого ряда

Сравним сумму хвостов $Q = Q_1 + Q_2 = 3 + 5 = 8$ с табличным значением для уровня значимости 0,05 и количеством членов в выборках 11 и 12 из таблицы 3 (см. приложение) $Q_t = 6$.

Найденное в исследовании значение *Q* больше, чем табличное *Q_t*, следовательно, в рассматриваемом случае различия существенны, т.е. у 2-й группы детей артериальное давление понижено по сравнению с первой группой.

Порядок выполнения

1. Согласно указанным вариантам из таблицы 7 (см. приложение, стр. 105) записать в отчет состояние пациентов (норма и патология), выборки значений параметров для двадцати пациентов.

- 2. Построить два ряда по возрастанию и определить сумму хвостов.
- 3. В таблице 3 (см. приложение, стр. 102) найти значение *Q* для уровня значимости 0,05 и количества членов в вашей выборке.
- 4. Сравнить табличное значение с найденным значением в исследовании и сделать вывод о различии выборок.
- 5. Записать полученный результат в отчет

Лабораторная работа № 5.

Проверка гипотезы о различии конечных выборок.

Параметрические критерии.

В предыдущей работе мы для определения различий в выборках использовали непараметрический критерий статистики. Сделаем тоже с помощью параметрического критерия.

Определение функциональных сдвигов в организме, возникающих под действием внешних условий, при заболевании или лечении, должно быть статистически достоверным. Проверка достоверности различий двух состояний осуществляется с помощью *t*-критерия Стьюдента. Для этого для двух сравниваемых состояний рассчитываются выборочные средние \bar{x}_1 , \bar{x}_2 и средние погрешности s_1 , s_2 , затем вычисляется величина t_2 :

$$t_{\mathfrak{I}} = \frac{|x_1 - \bar{x}_2|}{\sqrt{s_1^2 + s_2^2}}$$

Эта величина сравнивается со значением коэффициента Стьюдента t, взятого из таблицы 1 (см. приложение) согласно объёму выборки **n** и заданной доверительной вероятностью ω . Если значение t_3 превышает коэффициент t, то с вероятностью ω , состояния различны.

Порядок выполнения

- 1. Согласно указанным вариантам из таблицы 12 (см. приложение, стр. 119) записать в отчет состояние пациентов (норма и патология) и выборки значений параметров для двадцати пациентов.
- 2. Используя программу «Mstat» ввести значения параметров и рассчитать экспериментальный коэффициент Стьюдента. Записать в отчет полученное значение.
- Сравнить экспериментальный коэффициент со значением коэффициента Стьюдента, взятого из таблицы 1 (см. приложение, стр. 101) для доверительной вероятности 0,95.

Сделать вывод о различии или тождестве анализируемых состояний.
 Записать в отчет.

Лабораторная работа № 6. Расчет коэффициента парной линейной корреляции.

По мнению классика статистики: «Среди статистических показателей нет ни одного, который бы более соответствовал биологическим задачам, чем коэффициент корреляции, и, пожалуй, нет такого статистического метода, который столь широко применялся бы к самым разнообразным данным, как корреляционный метод» (Р.А.Фишер – Статистические методы для исследователей, М.: Государственное статистическое издательство, 1958).

На практике часто бывает важно знать, существует ли зависимость между некоторыми наблюдаемыми величинами, и если да, то какая она – сильная или слабая, положительная или отрицательная. Для выяснения этих обстоятельств используется корреляционный анализ.

Основные регулирующие системы организма непрерывно осуществляют стабилизацию всех его параметров. При возникновении патологии или при изменении внешних условий изменение значения одного параметра влечет за собой изменения в той или иной степени значений других параметров. В силу наличия обратных связей и множественности путей саморегуляции организма связь между его параметрами не может быть описана аналитической зависимостью вида y = f(x), а описывается корреляционной связью, т.е. зависимостью, подверженной статистическим флуктуациям.

Для установления этой зависимости необходим корреляционный анализ изменения исследуемых параметров у достаточно большой группы людей, находящихся в одном состоянии (норма, конкретное заболевание, одинаковые внешние воздействия и т.д.).

Существуют линейная и параболическая корреляция, парная и множественная и т.д. Корреляция может быть положительной, когда увеличение

значения одного параметра происходит с увеличением значения другого и отрицательной, когда увеличение значения одного параметра происходит с уменьшением значения другого. Характер и степень связи определяет выборочный коэффициент корреляции Пирсона, определяемый для простейшего случая – парной линейной корреляции двух параметров по формуле:

$$r(p_1, p_2) = \frac{1}{(n-1)\sigma_1\sigma_2} \left(\sum_{i=1}^n p_{1i}p_{2i} - n\overline{p_1}, \overline{p_2} \right)$$

Численное значение коэффициента корреляции находится в пределах от минус единицы до плюс единицы, причем, чем больше абсолютная величина коэффициента корреляции, тем теснее связь между исследуемыми параметрами или явлениями. Связь слабая, если |r| < 0.3, средняя, если 0.3 < |r| < 0.7 и тесная, если |r| > 0.7.

Для нахождения коэффициента парной линейной корреляции в Excel имеется встроенная функция Коррел. Тот же результат можно получить, используя вкладки «Анализ», «Данные» и затем опцию «Корреляция».

В данной работе мы будем находить коэффициент корреляции с помощью специализированной программы «Mstat».

Порядок выполнения

- Согласно указанному варианту из таблицы 9 (см. приложение, стр. 110) записать в отчет состояние пациентов и выборки значений параметров для проверки корреляции.
- 2. Используя программу «Mstat» ввести значения параметров, рассчитать коэффициент корреляции и записать его в отчет.
- Сделать вывод о прямой или обратной зависимости между исследуемыми параметрами и о степени их связи для конкретного состояния организма.

Лабораторная работа № 7.

Расчет коэффициентов аппроксимирующих формул.

При наличии корреляционной связи между функциональными параметрами зависимость исследуемых параметров друг от друга может быть описана аппроксимирующей формулой. Для случая парной линейной корреляции такой формулой является формула линейной регрессии:

$$P_2 = aP_1 + b,$$

где выборочный коэффициент регрессии P_2 на P_1 :

$$a = \frac{\sum_{i=1}^{n} P_{1i} P_{2i} - n\bar{P}_1 \bar{P}_2}{\sum_{i=1}^{n} P_1^2 - n\bar{P}_1^2}$$

выборочный начальный коэффициент:

$$b = \bar{P}_2 - a\bar{P}_1$$

Нахождение коэффициентов аппроксимирующих формул дает возможность использовать аналитические зависимости для описания связей между функциональными параметрами организма, что лежит в основе математического моделирования.

Порядок выполнения

- Согласно указанному варианту выписать из таблицы 9 (см. приложение, стр. 110) в отчет состояние организма и параметры P₁ и P₂.
- Начертить в отчете график с координатами P₁ и P₂. Исходя из максимальных и минимальных значений коррелированных параметров, выбрать масштаб и нанести точки, соответствующие значениям этих параметров.
- Используя программу «Mstat» ввести значения параметров, рассчитать и записать в отчет коэффициенты линейной аппроксимирующей формулы, указывая единицы измерения. Записать в отчет уравнение линейной регрессии.
- 4. В координатах, в которых нанесены точки значений параметров, нарисовать линию линейной регрессии.

- 5. Используя программу «Mstat» рассчитать коэффициенты квадратичной аппроксимирующей формулы, записать в отчет уравнение параболической регрессии и нарисовать на том же графике линию параболической регрессии.
- 6. Сделать вывод о том какая функция линейная или параболическая лучше описывает зависимость между исследуемыми параметрами при конкретном состоянии организма путем сравнения сумм квадратов отклонений точек по вертикали от соответствующих графиков.

Лабораторная работа № 8.

Расчет непараметрического рангового коэффициента корреляции по Спирмену.

В предыдущей работе мы рассчитывали параметрический коэффициент парной линейной корреляции по Пирсону. Такие расчеты возможны в случае, если изучаемые параметры распределены нормально.

Если распределение не является нормальным или о виде распределения ничего не известно, то можно перейти к непараметрическим коэффициентам корреляции, одинаково пригодным при любом непрерывном распределении.

Для расчета непараметрического коэффициента ранговой корреляции Спирмена необходимо сделать следующее. Для каждого x_i рассчитать его ранг r_i в вариационном ряду, построенном по выборке X. Для каждого y_i рассчитать его ранг q_i в вариационном ряду, построенном по выборке Y. Для набора из *n* пар вычислить линейный коэффициент корреляции. Он называется коэффициентом ранговой корреляции, поскольку определяется через ранги:

$$\rho_n = 1 - \frac{6\sum_{i=1}^n (r_i - q_i)^2}{n^3 - n}$$

В качестве примера рассмотрим данные роста и веса десяти марсиан из книги С. Гланца

N⁰	1	2	3	4	5	6	7	8	9	10
Рост (см)	33	35	31	40	42	32	41	34	35	46
Вес (г)	7,6	9,6	7,7	11,8	14,8	8,3	12,2	9,1	9,9	15,6

Для расчета коэффициента ранговой корреляции по Спирмену создадим следующую ранговую таблицу. Расположим всех марсиан по росту (первый столбик) и присвоим им ранги с первого по десятый (второй столбик). В третий столбик внесем веса марсиан и в четвертый соответствующие им ранги.

Рост (см)	Ранг (<i>r_i</i>)	Вес (г)	Ранг q _i	$r_i - q_i$
31	1	7,7	2	-1
32	2	8,3	3	-1
33	3	7,6	1	2
34	4	9,1	4	0
35	5,5	9,6	5	0,5
35	5,5	9,9	6	-0,5
40	7	11,8	7	0
41	8	12,2	8	0
42	9	14,8	9	0
46	10	15,6	10	0

Используя предыдущую формулу, вычислим коэффициент ранговой корреляции Спирмена *р*=0,96.

Обратимся к таблице 5 (см. приложение, стр. 103) критических значений коэффициента ранговой корреляции Спирмена. Критическое значение для уровня значимости 0,01 и объема выборки n=10 равно 0,794, что меньше полученного нами. Т.е. корреляция (связь между параметрами) статистически значима (p<0,01).

Этот коэффициент также принимает значения от -1 до +1. Аналогичным образом он отражает силу и характер связи между величинами.

Использование рангового коэффициента корреляции Спирмена позволяет анализировать наличие корреляции порядковых переменных, когда некоторый признак объекта («степень тяжести заболевания», «соленость» и т.п.) нельзя строго выразить численно, но можно упорядочить объекты по его возрастанию или убыванию, т.е. ранжировать их.

Порядок выполнения

- Согласно указанному варианту из таблицы 9 (см. приложение, стр. 110) записать в отчет состояние пациентов и выборки значений параметров для проверки корреляции.
- 2. На основании исходных данных построить ранговую таблицу двух параметров и записать её в отчет.
- 3. По приведенной выше формуле рассчитать коэффициент ранговой корреляции Спирмена.
- Сравнить полученный коэффициент с табличным (см. приложение, стр. 103) для уровня значимости 0,05 и сделать вывод о степени связи исследуемых параметров для конкретного состояния организма.

Лабораторная работа № 9.

Расчет дифференциальной информативности функционального параметра

Дифференциальная информативность функциональных параметров организма позволяет сравнить и выявить наиболее эффективные диагностические методики при диагностике конкретных заболеваний. Наряду с оптимизацией выполнения последовательности проведения этих методик для каждого больного это приводит к ускорению и повышению надежности диагностики.

Дифференциальная информативность функционального параметра организма для диагностики между двумя заболеваниями рассчитывается по формуле:

$$I\left(P,\frac{d_{j}}{d_{k}}\right) = 0.5 \cdot \left[\frac{\sigma_{j}^{2}}{\sigma_{k}^{2}} + \frac{\sigma_{k}^{2}}{\sigma_{j}^{2}} - 2 + \left(\frac{1}{\sigma_{j}^{2}} + \frac{1}{\sigma_{k}^{2}}\right) \cdot (\bar{P}_{j} - \bar{P}_{k})^{2}\right]$$

Порядок выполнения

 Согласно указанному варианту из таблицы 10 (см. приложение, стр. 117) записать в отчет диагностируемые состояния и соответствующие им средние значения пяти параметров и среднеквадратических отклонений.
- Используя программу «Mstat» ввести средние значения параметров и среднеквадратических отклонений и рассчитать информативность каждого параметра для дифференциальной диагностики между каждыми двум состояниям для всех возможных сочетаний этих состояний. Записать в отчет полученные данные.
- Рассчитать информативность каждого параметра для диагностики всех состояний путем суммирования отдельных информативностей, полученных на предыдущем этапе.
- Проанализировать результаты, сделать вывод о том какой из пяти исследуемых параметров наиболее целесообразен для дифференциальной диагностики данных состояний.

Лабораторная работа № 10.

Оценка тяжести состояния организма по функциональным параметрам.

Отклонение описывающих состояние организма функциональных параметров от нормы позволяет определить степени нарушения функционирования организма. Это дает возможность анализировать течение болезни в процессе лечения, сравнивать эффективность способов лечения и таким образом оптимизировать процесс лечения.

Тяжесть состояния по отдельному функциональному параметру рассчитывается по формуле:

$$T(P_i) = \frac{P_i - \bar{P}_i^{\mathrm{H}}}{\sigma_i^{\mathrm{H}}}$$

Общая тяжесть состояния по всем измеренным функциональным параметрам рассчитывается по формуле:

$$T = \sqrt{\frac{1}{n} \sum_{i=1}^{n} T^2(P_i)}$$

Порядок выполнения

- Согласно указанным вариантам из таблицы 11 (см. приложение, стр. 118) записать в отчет значения параметров для пяти пациентов; из таблицы 10 (см. приложение. стр. 117) записать средние значения и среднеквадратические отклонения этих параметров в норме.
- Используя программу «Mstat» ввести необходимые данные и рассчитать тяжести состояния по каждому параметру в отдельности и общую тяжесть состояния по всем параметрам для каждого из пяти пациентов. Записать в отчет полученные данные.
- 3. Проанализировать результаты, сделать вывод о том у какого из обследованных пациентов тяжесть состояния наибольшая.

2. Базы данных в информационных медицинских системах Лабораторная работа № 11.

Базы данных медперсонала с применением СУБД MS «Access».

База данных (БД) – набор сведений, хранящихся некоторым упорядоченным способом. Например, сведения о кадровом составе организации (список сотрудников с данными о возрасте, семейном положении, образовании, адресе проживания и т.п.), или данные о товарах в магазине, или так называемая электронная картотека пациентов в больнице и т.д. Для работы с БД существуют специализированные комплексы программ – так называемые системы управления базами данных (СУБД). Система управления базами данных – это совокупность языковых и программных средств, которая осуществляет доступ к данным, позволяет их создавать, менять и удалять, обеспечивает безопасность данных и т.д. В общем СУБД – это система, позволяющая создавать базы данных и манипулировать сведениями из них. А осуществляет этот доступ к данным СУБД необходимо посредством специального языка (знание которого только разработчику крупной БД). Одной из распространенных и несложных в освоении СУБЛ является программа Access компании Microsoft, входящая В профессиональную версию комплекта MS Office.

Порядок выполнения

- 1. Запустить MS Access и создать новую пустую базу данных. Откроется Таблица 1.
- 2. Перейдите в режим «Конструктора» Таблицы1. Задайте имя для Таблицы1 «Мед персонал». Для перехода в режим Конструктора можно либо выбрать нужный режим в левом верхнем углу окна Access на закладке Главная, нажав

на иконку , либо нажав на значок нужного режима на панели режимов в

правом нижнем углу окна программы 🔳 🖷 🕊 🔀

- 3. Создайте в таблице «Мед персонал» поля следующего типа:
 - «ФИО» тип данных «Текстовый»;
 - «Дата рождения» тип данных «Дата/время»;
 - «Специальность» тип данных «Текстовый»;
 - «Должность» тип данных «Текстовый»;
 - «Стаж» тип данных «Числовой».

Так как в каждой таблице базы данных одно поле ОБЯЗАТЕЛЬНО должно быть ключевым (т.е. уникальным и неповторяющимся для данной таблицы), изначально таблица создается с уже одним полем, отмеченным знаком ключа (рис. 8) как ключевое.

Рис. 8 Поле таблицы, помеченное как ключевое.

При создании своих полей следите, чтобы одно из полей (лучше всего ФИО) имело признак ключевого.

 Создайте новую таблицу с именем «Специальности». В ней в режиме Конструктор создайте <u>одно</u> поле с именем «Специальность» и типом данных «Текстовый». 5. Перейдите в режим Таблица, выбрав данный режим в левом верхнем углу окна Access на закладке *Главная* (рис. 9) или нажав на значок нужного режима на панели режимов в правом нижнем углу окна программы

Рис. 9 Переключение режимов таблицы на закладке Главная.

- 6. Заполните таблицу «Специальности» следующими данными:
 - Венеролог
 - м/сестра
 - Невропатолог
 - Пульмонолог
 - Терапевт
 - Хирург
 - Эндокринолог

У вас должна получиться таблица следующего вида (рис. 10).

Рис. 10 Таблица «Специальности».

- Создайте новую таблицу с именем «Должности». В ней в режиме Конструктор создайте <u>одно</u> поле с именем «Должность» и типом данных «Текстовый».
- 8. Заполните таблицу «Должности» (перейдя в режим Таблица) следующими данными:
 - Врач
 - Глав. врач
 - Главная м/сестра
 - Зав. отделением
 - Интерн
 - М/сестра
 - Санитар
 - Старшая м/сестра

Рис. 11 Таблица «Должности»

9. Создайте форму для ввода и корректировки данных. Для этого закройте все открытые таблицы и откройте только таблицу «Мед персонал». После на закладке Создание нажмите иконку «Форма» (рис. 12).

Рис. 12 Значок создания новой формы на загладке Создание.

Создаєтся пустая форма, содержащая поля редактирования, связанные с полями таблицы «Мед персонал» (рис. 13).

📧 Мед персонал1		- 0 23
😑 Мед п	ерсонал	
ФИО		
Дата рождения		
Специальность		•
Должность		•
Стаж	0	
Запись: 14 4 16 из 16 🕨	н 🖂 🕅 Нет фильтра 🛛 Поиск	

Рис. 13 Пустое поле для ввода данных в таблицу «Мед персонал».

Для ввода специальности и должности используйте элемент «Поле со списком». Для замены простого поля для ввода данных (которое создается по умолчанию) на «Поле со списком», перейдите в режим Конструктор и нажмите на нужном поле правой кнопкой мыши (если при переходе в режим Конструктор окажутся выбраны все поля формы – кликните левой кнопкой мыши на свободном месте формы чтобы снять выделение всех элементов) и в контекстном меню выберете пункт «Преобразовать элемент» - «Поле со списком».

Свяжите поля формы с соответствующими полями таблицы «Мед персонал». Для поля «Специальность» в режиме конструктора форм щелкните правой кнопкой мыши на соответствующем поле формы и выберете в контекстном меню пункт «Свойства» (если окно «Свойства» еще не отображается). В появившейся панели

свойств данного поля формы на закладке «Данные» встаньте курсором на пункт «Источник строк» и нажмите самую правую кнопку (с тремя точками).

Макет Данные События Д	(ругие Bce
Данные	Специальность
Источник строк	SELECT Специальности.Специа 🔫 📖
Тип источника строк	Таблица или запрос

Рис. 14 Параметр «Источник строк» в свойствах поля формы.

Откроется построитель запросов с окном добавления таблицы (рис. 15).

Рис. 15 Построитель запросов с окном добавления таблицы

Укажите таблицу «Специальности» и нажмите «Добавить». Закройте окно добавления таблицы. Укажите поле таблицы «Специальности» откуда будут браться данные для поля со списком «Специальность» формы (рис. 16).

]		
Поле: Имя таблицы: Сортировка: Вывод на экран: Условие отбора: или:	Специальность Специальности	

Рис. 16 Поле «Специальность» таблицы «Специальности» в построителе запросов.

Закройте построитель запросов (как обычное окно, нажав на кнопку R в правом верхнем углу окна, или вызвав его контекстное меню и выбрав пункт «Закрыть»). При этом в окне подтверждения подтвердите сохранение изменений (рис. 17).

Microsoft	Access
	Подтвердите сохранение изменений инструкции SQL и обновление свойства.
A	Свойства "Источник записей" или "Источник строк" содержали инструкцию SQL перед вызовом построителя запросов.
	Для закрытия построителя без изменения исходной инструкции SQL нажмите кнопку "Нет".
	Да Нет Отмена

Рис. 17 Подтверждение изменений в запросе.

Выполните аналогичные действия для поля «Должность» создаваемой формы, добавив в формируемый запрос таблицу «Должности» и указав поле «Должность» (рис. 18 и 19).

Добавление таблицы	<u>?</u> ×
Таблицы Запросы Таблицы и запросы	
Должности Мед персонал Специальности	
Добавить Закр	ыть

Рис. 18 Построитель запросов с окном добавления таблицы «Должности».

Поле: Имя таблицы: Сортировка:	Должность <u></u> Должности	1
Сортировка. Вывод на экран: Условие отбора:		
или:		

Рис. 19 Поле «Должность» таблицы «Должности» в построителе запросов

10.С помощью созданной формы занесите данные о персонале клиники.

ФИО	Специальность	Должность	Стаж	Дата рождения
Алексеев В. В.	Пульмонолог	Зав. отделением	20	23.10.1974
Быков А.Е.	Терапевт	Зав. отделением	18	11.12.1975
Дурындин И.П.	Эндокринолог	Зав. отделением	20	19.09.1974
Кисегач А.К.	Терапевт	Глав. Врач	17	23.04.1977
Купитман И.Н.	Венеролог	Зав. отделением	22	30.01.1968
Курочкин И.П.	Невропатолог	Зав. Отделением	22	31.03.1968
Лобанов С.С.	Терапевт	интерн	1	04.05.1988
Лоскутов А.Г.	Хирург	Врач	8	13.04.1980
Петрова Г.Л.	м/сестра	м/сестра	3	22.02.1990
Ричардс Ф.	Терапевт	интерн	1	04.07.1987
Романенко Г.В.	Терапевт	интерн	1	13.08.1987
Сидоров И.Н.	м/сестра	санитар	5	12.09.1985
Скрябина Л.М.	м/сестра	Старшая	16	16.09.1978
Черноус В.Н.	Терапевт	интерн	1	14.11.1989
Шнурко О.Г.	Пульмонолог	Врач	19	07.12.1971

Например, можно использовать следующие данные:

11.Откройте таблицу «Мед персонал» (если она уже была открыта – закройте и откройте повторно) и убедитесь, что все данные занеслись правильно (рис. 20).

ФИО -	Дата рожде 🝷	Специальності 🗸	Должность 🚽	Стаж	-
Алексеев В.В,	23.10.1974	Пульмонолог	Зав. отделением		20
Быков А.Е.	11.12.1975	Терапевт	Зав. отделением		18
Дурындин И.П.	19.09.1974	Эндокринолог	Зав. отделением		20
Кисегач А.К.	23.04.1977	Терапевт	Глав. врач		17
Купитман И.Н.	30.01.1968	Венеролог	Зав. отделением		22
Курочкин И.П.	31.03.1968	Невропатолог	Зав. отделением		22
Лобанов С.С.	04.05.1988	Терапевт	интерн		1
Лоскутов А.Г.	13.04.1980	Хирург	Врач		8
Петрова Г.Л.	22.02.1990	м/сестра	м/сестра		3
Ричардс Ф.	04.07.1987	Терапевт	интерн		1
Романенко Г.В.	13.08.1987	Терапевт	интерн		1
Сидоров И.Н.	12.09.1985	м/сестра	санитар		5
Скрябина Л.М.	16.09.1978	м/сестра	Старшая м/сестра		16
Черноус В.Н.	14.11.1989	Терапевт	интерн		1
Шнурко О.Г.	07.12.1971	Пульмонолог	Врач		19

Рис. 20 Итоговый вид заполненной таблицы «Мед персонал».

Лабораторная работа № 12.

Составление запросов и отчетов.

Отчет - объект MS Access, предназначенный для вывода на экран, на печать или в файл необходимой информации из базы данных (БД). В отчет могут помещаться данные непосредственно из одной или нескольких таблиц БД. Часто построения отчета удобнее пользоваться предварительно созданным ДЛЯ запросом, в котором можно указать дополнительные критерии отбора данных для отчета. В отчете могут находиться не только данные из указанных таблиц. Также в отчет могут включаться заданные разработчиком операции над данными, например, вычисление среднего значения, итоговой суммы и т.п. Формированию СУБД отчета BO многих предварительно предшествует построение соответствующего запроса, в котором пользователь указывает какие данные из каких таблиц необходимо включить в отчет.

В данной работе вам необходимо для построенной ранее БД «Мед персонал» сформировать отчеты следующего вида:

- 1. Простой отчет для всех полей таблицы «Мед персонал».
- 2. Простой отчет для отобранных полей данной таблицы, предварительно составив соответствующий запрос.

3. Для п. 2 добавить ряд статистических вычислений (средние возраст и стаж работы, распределение персонала по стажу).

Порядок выполнения

- 1. Откройте БД «Мед персонал», созданную ранее.
- 2. На вкладке Создание выберите Мастер отчетов и создайте отчет, в который включите все поля таблицы «Мед персонал». Для этого в окне Создание отчетов укажите нужную таблицу и включите в отчет все ее поля (нажав кнопку), см. рис. 21).

Создание отчетов	
	Выберите поля для отчета. Допускается выбор нескольких таблиц или запросов.
<u>Т</u> аблицы и запросы Таблица: Мед персонал	×
<u>До</u> ступные поля:	В <u>ы</u> бранные поля:
ФИО Дата рождения Специальность Должность Стаж	∧ ∧ <
	Отмена <Назад Далее > Готово

Рис. 21 Окно мастера отчетов.

- 3. Нажав кнопку «Готово», вы увидите отчет, содержащий все данные таблицы «Мед персонал». Переключитесь в режим Конструктора данного отчета. Измените заголовок отчета, например, на «Данные о мед. Персонале ГКБ №1».
- 4. Выделите все поля отчета (кликая на них левой кнопкой мыши с нажатой клавишей Shift). Вызовите контекстное меню полей отчета и задайте Размер По размеру данных. Перейдите в режим Предварительного просмотра и проверьте правильность представленных данных. При необходимости установите размер и положение каждого поля вручную.

 Для выравнивания выводимых значений (по левому/правому краю или по центру) воспользуйтесь полем «Выравнивание текста» закладки «Макет» свойств данного поля вывода (рис. 22)

Maura La La L	- 1 -
макет Данные События	Другие Все
Формат поля	
Число десятичных знаков	Авто
Вывод на экран	Да
Ширина	4,074см
Высота	0,476см
От верхнего края	0,101см
От левого края	0,101 см
Тип фона	Прозрачный
Цвет фона	Нет цвета
Тип границы	Отсутствует
Ширина границы	Сверхтонкая
Цвет границы	Нет цвета
Оформление	обычное
Полосы прокрутки	Отсутствуют
Шрифт	Arial Cyr
Размер шрифта	8
Выравнивание текста	Общее
Насыщенность	обычный
Подчеркнутый	Нет

Рис. 22 Параметр «Выравнивание текста» поля отчета.

6. Далее создайте новый отчет, содержащий только поля «ФИО», «Дата рождения» и «Стаж» таблицы «Мед персонал». Такой отчет можно создать сразу, воспользовавшись Мастером отчетов (как в п.2), но для освоения построения запросов в Access, сначала сформируйте нужный запрос. Для этого на закладке Создание выберите Мастер запросов. В окне Мастера запросов укажите «Простой запрос» и нажмите «ОК». Затем укажите таблицу «Мед персонал» и выберите только поля «ФИО», «Дата рождения» и «Стаж». Нажмите «Готово».

Создание простых запросов				
	Выберите пол Допускается	я для запроса. выбор несколькі	их таблиц или за	просов.
<u>Т</u> аблицы и запросы				
Таблица: Мед персонал	<u>.</u>	Ī		
<u>До</u> ступные поля:	В <u>ы</u> бран	ные поля:		
ФИО Дата рождения Специальность Должность Стаж	∧ ∧ ∧ ∧ ∨ <			
	Отмена	< На <u>з</u> ад	<u>Д</u> алее >	<u>Г</u> отово

Рис. 23 Окно мастера запросов.

Создайте новый отчет (Создание – Мастер отчетов). В качестве источника данных выберите сформированный запрос и перенесите все его поля в отчет. Просмотрите отчет. Он должен иметь примерно такой вид (рис. 24).

Лед персонал Запрос	5	
ΦNO	Дата рождения	Стаж
Кисегач А.К.	23.04.1977	17
Быков А.Е.	11.12.1975	18
Купитман И.Н.	30.01.1968	22
Скрябина Л.М.	16.09.1978	16
Романенко Г.В.	13.08.1987	1
Лобанов С.С.	04.05.1988	1
Черноус В.М.	14.11.1989	1
Сидоров И.Н.	12.09.1985	5
Курочкин И.П.	31.03.1968	22
Алексеев В.В,	23.10.1974	20

Рис. 24 Простой отчет на основе созданного запроса.

7. Теперь вместо даты рождения включим в отчет текущий возраст сотрудника. Для этого переключитесь в режим Конструктора отчета. Измените в Верхнем колонтитуле подпись «Дата рождения» на «Возраст». Также измените в Области данных отчета имя поля «Дата рождения» на «Возраст» через закладку «Другие» Свойств этого поля (для вызова окна свойств поля нажмите на нем правой кнопкой и выберите в контекстном меню Свойства).

Окно свойств Тип выделенного элемента: Пол	e
Бозраст	•
6 · I · 7 · I · 8 · I · 9 · I · 10 · I · 11 · I · 12 · I · 13 · I · 14 · I · 15 · I · 16 · I · 17 · I · 18 · I · 19 · I · 20 · I · 21 · I · 2 Макет Данные События Д	угие Все
Имя	Возраст
Название таблицы	
ОС Всплывающая подсказка	
Индекс перехода по Таb	1
Переход по Тар	Да
Текст строки состояния	
Контекстное меню	
Возраст Стаж Идентификатор справки	0
Талана и по вертикали	Нет
Дополнительные сведения	
Дата рождения Стаж	

Рис. 25 Изменение имени поля.

 Для определения возраста сотрудника воспользуйтесь вычислительными возможностями Access. Для этого в Окне свойств поля «Возраст» на закладке «Данные» встаньте курсором на пункт «Данные». Нажмите на самую правую кнопку (с тремя точками). В открывшемся окне введите

=(Date()-[Дата рождения])\365

как указано на рис. 26.

Рис. 26 Ввод формулы расчета возраста сотрудников.

Здесь Date() – внутренняя функция Access, которая выдает текущую дату. Разность текущей даты и даты рождения – количество дней между указанными датами. Для получения количества лет – делим нацело (символ деления нацело – обратная косая черта «\») количество дней на 365. Перейдите в режим предварительного просмотра и проверьте правильность отчета. Должен быть отчет примерно такого вида (рис. 27):

Мед персонал Запрос		
ФИО	Возраст	Стаж
Кисегач А.К.	36	17
Быков А.Е.	37	18
Купитман И.Н.	45	22
Скрябина Л.М.	34	16
Романенко Г.В.	25	1
Лобанов С.С.	24	1
Черноус В.М.	23	1
Сидоров И.Н.	27	5

Рис. 27 Отчет на основе созданного запроса с вычислением возраста.

9. Включите в отчет данные о среднем возрасте и стаже персонала. Для этого перейдите в режим Конструктора данного отчета. В область Примечание отчета (самая нижняя) вставьте (воспользовавшись панелью инструментов)

элементы управления два новых поля. Измените их подписи на «Средний возраст:» и «Средний стаж:» (рис. 28).

€ Пр												
Средний возраст: Свободный							С	редни	й стаж	: C	вободный	
											_	

Рис. 28 Добавление новых полей в отчет.

Выделите поле данных для среднего стажа (как на рис. выше). В окне его свойств на закладке Данные выберите пункт Данные и нажмите кнопку с тремя точками. Откроется Построитель выражений. В нем введите, как указано на рис. 29 =Avg([Стаж]).

Рис. 29 Ввод формулы расчета среднего стажа сотрудников.

Функция Avg вычисляет среднее значение указанного поля. Переключитесь в режим просмотра отчета и проверьте правильность вычислений.

Переключитесь в режим **Конструктор** и проделайте аналогичные действия для поля «Средний возраст», только в **Построителе выражений** надо указать следующее выражение (рис. 30):

=Avg((Date()-[Дата рождения])\365)

Построитель выражений	x
<u>В</u> ведите выражение для создания <u>вычисляемого элемента управления</u> : (Примеры выражений включают [поле1] + [поле2] и [поле1] < 5)	
=Avg((Date()-[Дата рождения])\365)	ОК
	Отмена
	Справка
	<< Меньше

Рис. 30 Ввод формулы расчета среднего возраста сотрудников.

Перейдите в режим просмотра отчета и проверьте правильность вычислений. При необходимости измените формат вывода в поля «Средний стаж» и «Средний возраст», задав в их свойствах Формат поля – «Фиксированный» с нолем десятичных знаков после запятой (Свойства поля, закладка Макет).

10. Самостоятельно попробуйте добавить в отчет несколько полей (4 поля) и занести в них данные о количестве сотрудников со стажем 0-10, 11-20, 21-30 и более 30 лет. Для этого необходимо пользоваться встроенной функцией DCount – подсчет количества записей, удовлетворяющих заданному условию), где указывается поле «Стаж» запроса и условие нахождения стажа в указанном диапазоне. Например, для подсчета числа сотрудников, имеющих стаж от 10 до 20 лет, параметры функции DCount будут следующими:

=DCount([Стаж];"Мед персонал запрос";"[Стаж]>10 And [Стаж]<21")

11. Так как при вводе в Конструкторе отчетов строки выводимого текста могут размещаться произвольным образом, например, как показано на рис. 31 (поля «Средний стаж», «Стаж до 10 лет» и «Стаж от 10 до 20 лет» начинаются с разных горизонтальных позиций, что выглядит некрасиво).

🗲 Заг	оловок	отчета	1										-						
Me	д п	ерс	она	л Г	КБ	Nº1													
							2												
🗲 Bep	хний к	олонти	тул																
ΦΙ	10						Возр	аст (п	олных	лет)		Стаж							
\$ 06	і ласть да	анных	i	1	1	1						1	1			1			
Φ	ИО] []	-[дата	рожд	ени	Ста	ж	1						
€ Низ	жний к	олонти	тул	1			, .						-						
=Nov	v()												:	="Стр.	" & [P	age] &	." ИЗ "	& [Pag	ges]
🗲 Прі	имечан	ие отче	ета																
					1							1				1			
Cpe,	дний в	озрас	т (лет	: =	Avg					(Средн	ий ста	ж (лет): =Av	/g([I				
Cpe,	дний в	озрас	т (лет	:=	Avg				((Стаж д	Средн о 10 л	ий ста ет (че	ж (лет л)=DC): =Αν οι	/g([/				
Cpe,	дний в	озрас	т (лет	: =	Avg			07.11	[(Стаж д	Средн о 10 л	ий ста ет (че	ж (лет л)=DC): =Av	/g([1				
Cpe,	дний в	озрас	т (лет		Avg		Стаж	от 11 ,	(10 20 7	(Стаж д іет (че	Средн о 10 л л):	ий ста ет (че =DCo	ж (лет n)=DC ount): =Av	/g([י				
Cpe	дний в	озрас	т (лет	: =	Avg		Стаж	от 11 д	(10 20 <i>1</i>	(Стаж д Iет (че	Средн о 10 л л):	ий ста ет (че _=DCd	ж (лет n)=DC punt): =Av	/g([1				
Cpe	дний в	ospac	т (лет	=	Avg		Стаж	от 11,	(10 20 7	(Стаж д Iет (че	Средн о 10 л л):	ий ста ет (че _=DCd	ж (лет л)=DC punt): =Αν οι	rg([י				
Cpe	дний в	ospac	т (лет	=	Αν <u>ε</u>		Стаж	от 11,	[10 20 7	(Стаж д іет (че	о 10 л л):	ий ста ет (че =DC	ж (лет n)=DC): =Av	g(['				

Рис. 31 Добавление в отчет новых полей.

Для выравнивания строк по горизонтали и/или вертикали и установки между ними равномерных интервалов следует использовать инструменты закладки

		Инструменты ко	нструктора (отчетов
	Конструктор	Упорядочить	Формат	Парамет
«Упорядочить» конструктора отчетов				•

Для выравнивания строк вывода и задания интервалов между ними используйте

-]- < >	¢-
Размер или интервал *	Выровнять Н
	Размер и

следующие инструменты закладки «Упорядочить»

После выравнивания полей «Средний стаж», «Стаж до 10 лет» и «Стаж от 10 до 20 лет» по левому краю получим следующий фрагмент отчета (рис. 32).

Средний в	озрас	т (лет	: =/	Avg	Сред	ний ст	аж (ле	т): = Д	vg([
					Стаж	до 10	лет (ч	ел): =	DCoi	
					Стаж	от 11 ,	10 20 <i>1</i>	ет (че	л): =D	Count

Рис. 32 Поля отчета после выравнивания.

Информационные медицинские системы Лабораторная работа № 13. Автоматизированная консультативная система диагностики бронхо-легочных заболеваний.

АКС адресована врачам пульмонологических отделений, общих терапевтических отделений, станций скорой медицинской помощи с особой ориентацией на помощь дежурному врачу или фельдшеру.

Показания для использования АКС: предположение врача о развитии у больного какой-либо респираторной патологии, затруднение при решении тактических вопросов по ведению и лечению данного больного.

Для разделения включено 25 нозологических видов бронхо-легочной патологии от пневмонии, туберкулеза, рака легкого до вирусных респираторных инфекций.

Список симптомов, по которым предполагается диагностика, содержит 283 признака по следующим разделам: 1) жалобы, 2) анамнез, 3) объективные клинические данные, 4) данные инструментального исследования (рентгеноскопии, рентгенографии, ангиографии, бронхоскопии, исследования функции дыхания, УЗИ, ЭКГ, и т.д.) 5) лабораторные данные, 6) цитология, 7) туберкулиновая реакция.

Также для простого ознакомления или обучения (если система используется как учебное пособие), представлены 25 описаний ("портретов") избранных нозологий с лечением. Помимо этого, для пневмоний даны тактические маршруты лечения по степеням тяжести. Принцип создания "портретов"

нозологий заключался в структуризации признаков по диагностическому значению и стандарту обследования больного, а также оценки информативности признаков в баллах.

При построении диагностических алгоритмов АКС использовались экспертные знания. Приобретение знаний осуществлялось с помощью интервью. Основной стратегией интервьюирования избраны репертуарные решетки. Эксперту были предложены группы нозологий, внутри которых он должен был провести дифференциальную диагностику с помощью минимального набора признаков. Далее, по выявленным признакам строились формализованные "симптомокомплексы", отвечающие определенному диагнозу с определенной степенью вероятности.

Для определения диагноза врачу необходимо из дерева симптомов выбрать только те признаки, которые присутствуют у больного. Далее АКС сама ставит диагноз и при необходимости может объяснить свой выбор. По поставленному диагнозу можно получить информацию о лечении и маршрут движения больного в зависимости от степени тяжести процесса. Все результаты можно сохранить в базе данных для использования в будущем.

Алгоритмы диагностики позволяют дать ответ с разным уровнем вероятности: вероятный диагноз, наиболее вероятный и достоверный. При отсутствии формальных синдромов АКС может предложить диагноз по сумме признаков данного случая, введенных в программу. Если и этот способ не с компьютером об достигает цели, возможен диалог отсутствии представительного симптома для наиболее близкого по данному набору признаков диагноза.

Проведенный контроль на диагностическую точность (223 случая) с последующей корректировкой диагностических алгоритмов обнаружил 91.5% совпадений с клиническим диагнозом.

Алгоритмический аппарат системы — алгоритм близости подобия в комбинации с экспертной оценкой.

Пример 1:

Для постановки диагноза: "Хронический обструктивный бронхит. Достоверный диагноз".

Достаточно набора симптомов:

- 36 Кашель с трудноотделяемой мокротой
- 61 Хронический бронхит в анамнезе
- 121 Свистящие хрипы на вдохе и выдохе
- 199 Сетчатая деформация легочного рисунка

Диагностика								×
06			Huswaaraa					
Общее дерево приз	наков:		множество	ыоран	ных приз	наков	-	
Все досту в виде де	Выбранные пользователем симптомы для диагностики							
Диагнозы:								
Список поставленных диагнозов								
👸 Диагноз	? Объяснить	🛱 Диа	лог) Леч	ение	×	Вы	ход

Рис. 33 Окно «Диагностика»

Пример 2:

Откройте окно базы данных пациентов (пункт основного меню программы "База данных"). Выделите запись #12. Откройте окно диагностики данного пациента (кнопка "Диагностика" в окне базы данных) и нажмите кнопку "Диагноз".

По данному набору симптомов система поставила диагноз: "Хронический обструктивный бронхит. Достоверный диагноз". В наборе симптомов присутствует признак - "199 Сетчатая деформация легочного рисунка" из раздела

"Рентгенография и рентгеноскопия". Если убрать этот симптом и повторить диагностику, то достоверность снизится до наиболее вероятной. Если убрать симптом: "121 Свистящие хрипы на вдохе и выдохе", вероятность снизится до вероятной. Эти симптомы обладают значительной информативностью.

Такие симптомы как "1 Слабость", "22 Озноб" и ряд других не влияют на диагностику (не меняют достоверность диагноза при их добавлении) следовательно, обладают незначительной информативностью.

Порядок выполнения

- 1. Запустите программу "Пульмонология" (На рабочем столе ярлык PULMO).
- 2. С помощью пункта меню "Диагностика", откройте основное окно диагностики нозологий:
- 3. В разделе "Общее дерево признаков" представлены все доступные для диагностики симптомы. Для выбора симптома необходимо выделить его и нажмите кнопку "Добавить". Список выбранных для диагностики симптомов доступен в разделе "Множество выбранных признаков".
- 4. После формирования списка симптомов можно провести диагностику (кнопка "Диагноз"). Если система может по выбранным симптомам поставить какой-либо диагноз, он появится в разделе "Диагнозы". Выделив один из возможных диагнозов можно попросить систему объяснить алгоритм его постановки (кнопка "Объяснить"). Если симптомов для постановки диагноза мало (раздел "Диагнозы" остается пустым), необходимо дополнить их список из дерева признаков или из окна "Дополнительные признаки" (открывается кнопкой "Диалог"). В окне "Дополнительные признаки" собраны самые информативные для данной ситуации признаки.
- 5. Самостоятельно создайте три разных, набора симптомов подходящих для постановки разных диагнозов. Оформите результаты.
- Найдите наиболее информативные симптомы для нескольких нозологий.
 Оформите результаты. Сделайте выводы.

Лабораторная работа № 14.

Дифференциальная диагностика по формуле Байеса.

Основная задача врача на предварительном этапе диагностического процесса – по набору симптомов, выявленных у пациента установить предварительный диагноз. Совершенно ясно, что установить диагноз за короткий промежуток времени не простая задача, особенно для молодых врачей, не имеющих большого опыта работы.

Поэтому уже в 70-х годах стали создаваться системы компьютерной (машинной) диагностики, которые позволяли по набору имеющихся симптомов у пациента рассчитать вероятность каждого из возможных диагнозов.

Существует довольно много различных алгоритмов, по которым работают данные системы, но одним из наиболее известных является алгоритм Байеса, который позволяет по набору симптомов (симптомокомплексу) пациента и известным вероятностям встречаемости заболеваний в данной группе (отделении), рассчитать вероятности встречи каждого заболевания из всего списка заболеваний, встречающихся в данном отделении.

В основе данного алгоритма лежит так называемая формула Байеса:

$$\omega(d_j/S) = \frac{\omega(d_j) \cdot \omega(S/d_j)}{\sum_{j=1}^n \omega(d_j) \cdot \omega(S/d_j)}$$

В этой формуле:

 $\omega(d_j/S)$ – вероятность встречи какого-либо заболевания при данном симптомокомплексе,

 $\omega(d_i)$ – вероятность встречи какого-либо заболевания в данном отделении,

ω(*S*/*d_j*) – вероятность наличия данного симтомокомплекса при данном заболевании.

Таким образом, расчеты по алгоритму Байеса дают возможность получить вероятности встречи каждого заболевания из всего списка заболеваний и сделать вывод о том, какое из них наиболее вероятно у больного с данными симптомами.

Рассмотрим небольшой виртуальный пример.

Заболевания молочных желез у женщин встречаются довольно часто. Чем на более ранних стадиях будет выявлено то или иное заболевание, тем успешнее может быть осуществлено лечение.

В связи с этим была поставлена задача – создать простой экспресс-метод диагностики заболеваний молочной железы, используя только набор симптомов, выявленных у данной пациентки.

На предварительном этапе, на основании изучения историй болезни молочных желез у 208 женщин были выделены четыре основные заболевания (группы):

- 1. Мастит
- 2. Мастопатия
- 3. Липома
- 4. Рак молочной железы

Далее были рассчитаны вероятности встречи каждого из четырех заболеваний как частное от деления количества пациенток с определенным заболеванием на общее число пациенток.

$$\omega(d_1) = 0,07$$

 $\omega(d_2) = 0,5$
 $\omega(d_3) = 0,26$
 $\omega(d_4) = 0,17$

Затем была составлена таблица вероятностей наличия определенного симптома S_i при каждом из четырех заболеваний $d_i - \omega(S/d_i)$.

На этом подготовительный этап завершен, так как у нас есть все необходимые данные для диагностики по Байесу.

Симитоми	1	2	3	4
Симптомы	группа	группа	группа	группа
S1 - Наличие трех и более абортов	0	0,01873	0,00459	0,01903
S2 - Неудовлетворенность половой жизнью	0	0,05376	0,02296	0,06484
S3 - Использование презервативов	0,0864	0,04448	0,05505	0,171
S4 - Наличие фибромиомы матки	0	0,02809	0,00918	0,0285
S5 - Хронические заболевания матки и придатков	0,17287	0,06553	0,1101	0,13335
S6 - Использование гормональных контрацептивов	0,17287	0,05617	0,11926	0,12184
S7 - Наличие сгущений железистой ткани	0,08592	0,07257	0	0
S8 - Наличие мелких кист	0,12949	0,20364	0,14129	0,20342
S9 - Расширение протоков	0,08592	0,08893	0,03532	0
S10 - Наличие очагового фиброаденоматоза	0	0,01169	0,01378	0,02907
S11 - Наличие участков фиброза	0	0,00468	0,04592	0,20342
S12 - Крупные кисты	0	0,02107	0,00459	0
S13 - Повышенный тонус симпатической нервной системы с одной стороны	0,04326	0	0,18564	0,02552
S14 - Пониженный тонус симпатической нервной системы с одной стороны	0,17287	0,14986	0	0
S15 - Конвективный вариант, асимметричная тепловая картина	0,0504	0,07032	0,0159	0
S16 - Кондуктивный вариант, асимметричная тепловая картина	0	0,11049	0,23641	0
Сумма	1	1	1	1

Теперь допустим, к нам пришла пациентка, у которой выявлен набор симптомов (S3, S6, S7, S8, S14). Вычисляем вероятности наличия данного симптомокомплекса при каждом заболевании, путем суммирования вероятностей обнаруженных симптомов (эти вероятности входят в формулу Байеса).

 $\omega (S/d_1) = 0,648$ $\omega (S/d_2) = 0,527$ $\omega (S/d_3) = 0,316$ $\omega (S/d_4) = 0,436$

Далее вычисляем вероятности наличия каждого заболевания у данной пациентки при данном симптомокомплексе по формуле Байеса;

$$\omega (d_1 / S) = 0,1$$

 $\omega (d_2 / S) = 0,55$
 $\omega (d_3 / S) = 0,17$
 $\omega (d_4 / S) = 0,18$

Таким образом, наибольшая вероятность наличия у пациентки второго заболевания (мастопатии).

Данный алгоритм заложен в автоматизированную форму расчета вероятности, созданную на базе программы *Microsoft Office Excel* позволяющей в кратчайший срок произвести расчет вероятности наличия того или иного заболевания.

Порядок выполнения

- 1. Согласно указанным преподавателем симптомам поставить в первом столбце 1, если симптом присутствует или 0, если симптом отсутствует.
- 2. Записать в отчет симптомы, вероятности наличия каждого заболевания при данных симптомах.
- 3. Сделать вывод о том, какое заболевание наиболее вероятно и записать в отчет.

Лабораторная работа № 15.

Автоматизированное рабочее место подготовки

медико-статистических данных.

Автоматизированное рабочее место (APM) подготовки медикостатистических данных представляет собой самостоятельный программный продукт. Оно предназначено для автоматизации работы в медицинском архиве. А именно, учет историй болезни, учет движения больных, подготовка внутренних и внешних отчетов, выдачу справок и выписок из истории болезни, ввод учетной информации из истории болезни в базу данных.

Область применения данного ПС: архивная и статистическая деятельность в медицинских учреждениях.

НАЗНАЧЕНИЕ И УСЛОВИЯ ПРИМЕНЕНИЯ

АРМ подготовки медико-статистических данных содержит в себе в себе базу данных и исполняемый модуль, предназначенный для поддержки основных видов деятельности в учетных подразделениях медицинского учреждения.

Основу модуля составляют набор функций, позволяющих автоматизировать следующие процессы:

1) Регистрация поступившего пациента в базе данных (БД).

2) Оформление выписки пациента.

3) Оформление перевода пациента в другое отделение.

4) Ввод медико-статистических данных из истории болезни в БД

5) Оформление выдачи из архива и прием на хранение истории болезни.

6) Списание истории болезни.

7) Формирование стандартных статистических отчетов.

8) Формирование БД справочной информации.

Наличие в БД статистической информации о пациентах позволяет оперативно и достоверно определять текущую загруженность отделений, количественные и качественные показатели их работы, осуществлять поддержку выполнения научных программ.

Входной информацией программного комплекса являются данные о пациенте, госпитализациях, операциях, лабораторные данные, данные о перемещениях по отделениям и информация о движении истории болезни (формуляр).

Выходной информацией программы являются внутренние и внешние отчеты.

ОПИСАНИЕ ОПЕРАЦИЙ

Управление программой.

После запуска программы WrArchiv.exe на экране монитора возникает исходная форма (Рис. 34).

В левой части формы находится список пациентов в алфавитном порядке с указанием номера истории болезни. В правой части отображены в иерархическом виде данные о пациенте, который выбран в правом списке. Для того, чтобы просмотреть подробную информацию, необходимо дважды щелкнуть левой

клавишей мыши по соответствующему объекту. Например, по дате операции или по датам пребывания в стационаре.

На верхней панели формы сосредоточены основные кнопки управления программой.

- 1. присоединение базы данных. Программа позволяет работать с любой копией базы данных, имеющей заданную структуру. Такого рода работа бывает необходима при анализе тематических выборок из основной базы данных.
- 2. Ш получение рабочего списка пациентов. При нажатии этой кнопки создается список пациентов находившихся на лечении в определенный период.
- 3. 🕒 формирование стандартных отчетов.
- 4. 🛄 выдача справки.
- 5. 🖾 формирование выписки из истории болезни.
- 6. 🔳 редактирование справочников.
- 7. 💼 ввод и корректировка реквизитов ЛПУ.
- 8. удаление записей.

🖄 АРХИВ (C:\Program Files\Archives\archives\Ar	chives.mdb)		_ 8 ×
			\Diamond
Алексеева Анна Павловна Баранов Федор Сергеевич Витькин Виктор Викторович Гайгин Олег Алексеевич Иванов Иван Иванович Петрова Ирина Петровна Сидорова Мария Павловна Шурупов Иван Семенович Шурупов Павел Сергеевич	68467 80091 70811 46397 67635 30375 74181 80040 46972	 Варанов Федор Сергеевич Воранов Федор Сергеевич Воранов Федор Сергеевич Воранов Федор Сергеевич ФОРМУЛЯР ФОРМУЛЯР СПРЕБЫВАНИЯ В СТАЦИ 22.06.1989 - 15.08.1989 01.01.1990 - 01.01.1990 01.01.1990 - 01.01.1990 Изаначения В ПЕРЕМЕЩЕНИЯ ПО ФОРМУЛЯР Операции СТАТУСЫ/СОСТОЯ РЕЗУЛЬТАТЫ АНАЛ Назначения В ПЕРЕМЕЩЕНИЯ ПО ФОРМЕНИЯ ФОРМЕНИЯ ФОРМАНИЯ 	ОНАРЕ НИЯ IИЗОВ ОТДЕЛЕНИЯМ .1990

Рис. 34. Интерфейс программы WrArchiv.exe

Работа с данными о пациенте.

Для начала работы с данными конкретного пациента необходимо найти его в левом списке основной формы.

Поиск может быть выполнен либо по номеру истории болезни, либо по фамилии. Чтобы выполнить поиск нужно просто начать набирать либо номер истории болезни, либо фамилию пациента. В процессе набора появится форма ввода. Тип формы определяется первым введенным символом. Если вводится цифра, то появляется первая форма (Рис. 35), если буква, то вторая (35 Форма при вводе цифры Рис. 36).

Рис.35 Форма при вводе цифры

Рис. 36 Форма при вводе буквы

При поиске по фамилии ищется первая по алфавиту фамилия, которая содержит набранный текст. Дальнейший поиск можно осуществить визуально, используя клавиши управления курсором (PgUp, PgOn, ↑, ↓).

Если выполняется поиск по номеру истории болезни, то дополнительно можно выбрать тему работы. Это позволит существенно ускорить выполнение операции, так как система автоматически запросит ввод только необходимой информации и предложит наиболее вероятные в данный момент значения. Например, при выборе темы "Поступление" появится форма (Рис.37), в которой отображена вся информация, необходимая для фиксации факта поступления пациента в стационар.

В поле актуальная дата указывается дата, которая при последующих шагах

будет заноситься в соответствующие поля (дата поступления, дата выписки и др.). По умолчанию актуальной датой берется дата предыдущего рабочего дня. Это обусловлено технологией работы, т.е. данные о поступлении, выписке и переводе появляются в учетном подразделении ЛПУ только на следующий рабочий день.

После нажатия кнопки "Выполнить", для пациента автоматически создастся новая запись о пребывании в стационаре.

<u> Поступление</u>		
История болезни	80091	
Фамилия И. О.	Баранов Федор Сергеевич	
Дата поступления	04.04.2006	
Отделение	Неотложной травмы	•
	Выполнить Отказ	

Рис.37. Форма «Поступление»

Если оформляется первичное поступление пациента, то система запросит подтверждение этого факта (Рис.38) и, в случае согласия сформирует запись о новой истории болезни и первую запись о пребывании в стационаре.

Внимание!						X	1
История боле	езни с ном	ером 99	99 не н	найдена.	Создал	гь новую?	
	OK		0	Ітмена			

Рис.38. Подтверждение введения нового пациента

Кроме информации о пациенте, в базе данных формируется запись о выдаче истории болезни в соответствующее отделение.

Перевод пациента из другого отделения.

Данная тема выбирается в случае перевода пациента из одного отделения в другое без выписки из ЛПУ (Рис. 39). В этом случае автоматически проверяется наличие записи о поступлении. В найденной записи проставляется дата выписки из предыдущего отделения и создается новая запись о поступлении в другое отделение. Кроме того, история болезни списывается с отделения, из которого произошла выписка пациента и записывается за новым отделением. Если запись о первичном поступлении не находится, то выдается соответствующая диагностика и отработка темы прекращается. В дальнейшем, необходимо ввести корректную информацию о пациенте вызывая соответствующие формы, которые описаны ниже.

🌋 Поступление переводом (Взрослая ортопедия) 📃 🗖 🗙					
История болезни	97191				
Фамилия И. О.	Абабков А.И.				
Дата поступления	03.11.01				
Отделение	Неотложной травмы				
[Выполнить Отказ				

Рис. 39. Форма «Поступление переводом»

Выписка

Данная тема отрабатывается тогда, когда пациент выписывается из ЛПУ (Рис. 40). Как и в случае с переводом, должна быть найдена запись о поступлении. В этом случае вся информация для ввода очевидна, и она формируется и заносится в базу данных автоматически по нажатию кнопки "Выполнить".

🛓 Выписка	- D ×
История болезни	97191
Фамилия И. О.	Абабков А.И.
Дата выписки	03.11.01
Отделение	Взрослая ортопедия
[Выполнить Отказ

Рис. 40. Форма «Выписка»

Перевод в другое отделения

Данная тема отрабатывается аналогично теме "Перевод из другого отделения".

Оформление истории болезни

При отработке данной темы в базу данных заносится вся медикостатистическая информация о выписавшемся пациенте. Оформление истории болезни, чаще всего, происходит в тот момент, когда история болезни возвращается из отделения в архив.

После того, как история болезни найдена, система последовательно предлагает следующие формы:

- Паспортные данные
- Клинические данные
- Отделения
- Операции

Оператор должен последовательно вводить всю необходимую информацию. Описание работы с формами приведено ниже.

Выдача истории болезни

Данная операция выполняется в том случае, когда необходимо выдать историю болезни из архива по причинам, не связанным с лечением (научная работа, в следственные органы и др.) (Рис.41).

🏦 Выдача истории болезни		- 🗆 ×
Дата выдачи	03.11.01 15	
Причина выдачи	Другая (указать в примечании)	•
Отделение		-
Персонально	Антониади Ю.В.	-
Кто выдал	Шайкина Н.В.	-
Количество р-грамм	12	
Примечание		
Выполни	пь Отказ	

Рис.41. Форма «История болезни. Выдача»

Прием истории болезни

Оформление возврата истории болезни в архив на хранение.

Списание истории болезни

Уничтожение истории болезни в соответствии с нормативными сроками.

<u>Другая</u>

Данная тема выбирается тогда, когда необходимо выполнить некоторые нестандартные действия. В этом случае просто осуществляется поиск истории болезни по номеру. Если история болезни находится, то на нее осуществляется перевод курсора, если не находится, то предлагается создать новую запись.

Работа с данными о пациенте.

Информация о пациенте представлена в базе данных в виде иерархической Верхним узлом структуры являются паспортные данные. С структуры. Каждая паспортными данными связаны данные 0 госпитализациях. госпитализация связана с записями об операциях и с записями о пребываниях пациента в различных отделениях в период госпитализации. Кроме того, к паспортным данным привязана информация о выдачах истории болезни к госпитализациям привязана информация о результатах (формуляр), а лабораторных исследований.

Для редактирования и просмотра информации разработаны следующие формы.

- Паспортные данные
- Клинические данные
- Отделения
- Операции
- Формуляр
- Лабораторные данные.

В данной версии программы не реализованы формы для описания статусов пациента и назначений.

Паспортные данные.

Форма для работы с паспортными данными изображена на рисунке 42. Для вывода формы на экран необходимо сделать двойной щелчок левой клавишей мыши по фамилии пациента на правой панели основной формы. После появления формы осуществляется ввод необходимой информации. Необходимость заполнения каждого конкретного поля определяется внутренними нормативами ЛПУ и необходимыми выходными отчетами. Часть полей формы заполняется путем набора с клавиатуры, а значения полей со стрелкой на правом конце выбираются из справочников.

Баранов Федор Сер	геевич			Стационарный номер	80091	
Номер полиса ОМО			654321			
lата рождения	01.01.1971	15		Пол	Мужской	
Амбулаторный номер	134441			Особое состояние		
Адресные данны	<u>5/e</u>					
Страна	РФ		•	Почтовый индекс		
Область(Край)	Свердловск	ая	•	Район области(Края)		
Город(Нас. пункт)	Карпинск		•	Городской район		
\дрес	Свердлова,	6			_	
Герритория (ОМО)					-	
Гелефон дом.				Телефон раб.		
Паспортные дан	ные					
Серия документа				Номер документа		
]ата выдачи			15	Кем выдан		
Примечание						

Рис.42. Форма для работы с паспортными данными

Клинические данные

Для вызова формы "Клинические данные" необходимо сделать двойной щелчок левой клавишей мыши по соответствующей строке в разделе "Пребывания в стационаре" на основной форме. Форма состоит из четырех подформ, которые расположены на следующих закладках.

- Лечение
- Результат
- Реестр
- Диагнозы

Закладка "Лечение" позволяет работать с данными, которые показаны на рисунке 43. Поля "Возраст" и "к/д" (койкодни) являются расчетными и не подлежат вводу.

Работа с формами "Лечение", "Результат" и "Реестр" происходит аналогично работе с формой "Паспортные данные".

🌋 Клинические данные					
Баранов Федор Сергеевич			80091		
Лечение Результат Реес	тр [Диагнозы				
Поступил 22.06.1989 🗉	Выписан 15.08. 1	1989	в К/д 54		
Возраст 18 лет			Социальный статус	Учащийся	•
Первичный/повторный	Первичный	•	Амбул./Стац.	Стационарный	-
Направлен	Врачом основн	ой сг	тециальности –		
Вид госпитализации	Плановое	•			
Вид патологии		•	Метод лечения	Другие	•
Вид лечения	Оперативный	•			
Наличие обследования		•	Наличие осмотра	Есть	•
Цель госпитализации			_		
Врач приемного покоя	Ламанова И.К.	•			
Финансирование	Республиканск	ий	_		
Примечание					

Рис.43. Вкладка "Лечение"

Форма на закладке "Диагнозы" (Рис.44) позволяет описывать диагнозы и коды диагнозов в соответствии с МКБ9 или МКБ10.Всего можно занести восемь видов диагнозов, которые указаны на кнопках в левой части формы. Изображение листа на кнопке указывает на наличие соответствующего диагноза.

🏦 Клинические данные		- 🗆 🗙
Баранов Федор Сергееви	14 80091	
Лечение Результат Реестр 🛽	иагнозы	
Клинический/Основной 🖹	Частичное повреждение сухожилия четырехглавой мышцы правого бедра.	
Клинический/Сопутствующий		
Клинический/Осложнения		
Направительный/Основной		
Направительный/Сопутствующий		
Консультативный/Основной		
Консультативный/Сопутствующий		
Патолого-анатомический		

Для того, чтобы занести соответствующие коды МКБ можно

воспользоваться специальным справочником кодов МКБ. Справочник вызывается двойным щелчком левой клавиши мыши в области текста диагноза.

Справочник представляет собой объединенную таблицу кодов МКБ 9 и 10 версии и текстовое описание диагноза.

В верхней части формы повторяются текст и коды, которые были ранее введены в базу данных. Эта информация может корректироваться и после завершения корректировки может быть занесена в базу данных.

Порядок выполнения.

- 1. Запустить программу «Автоматизированное рабочее место подготовки медико-статистических данных» (На рабочем столе ярлык WrArchiv).
- 2. Изучите описание основных операций программы.
- 3. Найдите пациента с номером истории болезни 46397.
- 4. Самостоятельно ознакомьтесь с его паспортными и клиническими данными.
- 5. В виде отчета представьте данные об этом пациенте (количество госпитализаций, даты поступления и выписки из стационара, количество койкодней и диагнозы по каждой госпитализации).
- Самостоятельно создайте запись о новом пациенте с произвольными паспортными и клиническими данными (Ф.И.О., дата рождения, пол, адрес, сроки лечения, диагнозы и т.д.).

4. Информационные технологии и интернет – ресурсы в

здравоохранении

Лабораторная работа № 16.

Основы Internet.

Основы WWW. Поиск информации в WWW.

Internet – это всемирная компьютерная сеть сетей, состоящая из множества компьютерных сетей разного масштаба (от локальных сетей небольших

предприятий до глобальных сетей крупных корпораций) и других сетевых устройств, соединенных каналами связи, по которым передается информация.

Internet надо воспринимать как среду для обмена информацией между компьютерами всего мира, т.е. как средство коммуникации. Некоторые параллели можно провести с телефоном. Телефонная сеть передает информацию от человека к человеку, Internet служит для общения компьютеров.

Основная задача сети Internet – это быстрая и надежная доставка информации от одного компьютера к другому.

Информация Internet В сети распределена между компьютерами неравномерно. Она концентрируется на определенных узлах, которые называются – серверы. Другие компьютеры подключаются к серверам и копируют к себе необходимую часть информации. Эти компьютеры называются клиентами. По копирования, информация визуализируется на экране клиентского мере компьютера в удобной для пользователя форме.

Для эффективной передачи информации компьютеры должны придерживаться общих правил. Правила взаимодействия компьютеров в сети называются протоколами. В основу всех протоколов сети Internet положены два протокола: ТСР – протокол контроля передачи информации, и IP – протокол транспорта пакетов от узла к узлу.

Чтобы избежать путаницы при передаче информации все узлы сети Internet имеют уникальные идентификаторы – IP адреса. IP адрес состоит из 4-х целых чисел в интервале от 0 до 255 (размер 1 байт), с разделителем в виде "точки". Например: 194.226.247.17 или 240.34.127.28 и др. Все компьютеры сети Internet для правильной доставки информации руководствуются этими адресами.

Людям очень неудобно работать с IP адресами (их трудно запоминать). Поэтому для себя люди придумали другую систему именования узлов Internet – доменные имена. Домен – объединение компьютеров по социальному или территориальному принципу. Домены организованы в виде иерархии. Имена самых крупных доменов (1-й уровень) жестко фиксированы. Доменное имя компьютера образуется перечислением всех имен доменов по иерархической
цепочке в направлении укрупнения с разделением точкой. Например: www.usma.ru или s1.mailserv.saletrue.com и др.

Internet, как и любая другая телекоммуникационная среда (например телефония), многофункционален. С помощью сети можно получать информацию в различной форме (текст, изображения, звук, видеоряд и др.), можно обмениваться электронными сообщениями друг с другом, можно общаться в реальном режиме времени, можно управлять компьютерами и другими устройствами и т.д. Для реализации определенной функции в сети Internet есть понятие ресурса. Ресурс – это процесс взаимодействия узлов по общепринятым правилам. Обычно у каждого ресурса есть свои правила взаимодействия узлов сети (протоколы), правила адресации компьютеров, правила хранения и форма представления информации.

Самый распространенный, на сегодняшний день, ресурс сети Internet – это Всемирная паутина (WWW). На долю этого ресурса приходится более 80% информационных запасов сети. Такое лидерство WWW имеет за счет самой адаптированной для сети Internet формы представления информации гипертекста. Гипертекст, в отличие от обычного текста, содержит в себе гипертекстовые ссылки (информационные мостики). Они позволяют соединять логическими связями части одного документа или отдельные документы друг с другом. За счет гипертекстовых ссылок можно удобно и интуитивно понятно очень большие объемы информации структурировать (сотни И тысячи многостраничных документов). Всемирная паутина ориентирована на графическую информацию, что также очень важно в современном компьютерном мире.

WWW, как и другие ресурсы Internet, организована по клиент-серверной архитектуре. Web-серверы в огромном количестве разбросаны по всему миру. Они хранят на своих носителях информации гипертекстовые документы и предоставляют их пользователям сети в ответ на их запросы. Пользователи сети Internet для соединения с серверами и получения Web-документов используют клиентские программы – Web-браузеры. На сегодняшний день существует

огромное количество Web-браузеров, которые распространяются бесплатно.

Для получения документа с какого-либо Web-сервера необходимо ввести в Enter. адресную панель его адрес И нажать Например: http://www.usma.ru/catalog/index.asp. Если полный адрес документа неизвестен, ограничиться адресом Web-сайта. Например: можно www.usu.ru ИЛИ www.nlm.nih.gov. По мере копирования с сервера, запрашиваемая страница визуализируется в рабочем пространстве. Т.к. это гипертекстовая страница, то в ней могут быть гипертекстовые ссылки. Ими можно воспользоваться для перехода на другой документ или на другой Web-сайт. Для этого достаточно кликнуть на ссылке один раз левой кнопкой мыши.

Для достижения высокой надежности и живучести Internet построен по принципу полной децентрализации. Все сегменты сети работают автономно. Руководящее, центральное начало отсутствует. Этот факт создает проблему поиска информации. В сети нет компьютера или организации, которая знала бы об Internet все. Все информационные запасы, адреса всех страниц, их содержание и т.д. Эту проблему усугубляет и бурное развитие сети. Каждый день появляются новые сайты и страницы, меняются адреса.

Проблема поиска информации решается в двух направлениях. Первое направление более старое, классическое – это создание Internet-каталогов. Каталоги – это списки ссылок на различные сайты, представленные в виде категорий. Выбирая, иерархии ИЗ предложенных, нужную категорию, пользователь уточняет свой запрос, сужает поле поиска ссылок. Каталоги просты в использовании и обслуживании, процент соответствия информации у каталогов достаточно высок. Однако есть один существенный недостаток: в каталоги заносятся ссылки на сайты или крупные разделы сайтов, ссылки на все страницы сайта в каталог не попадают. Для детального, тонкого поиска каталоги не подходят. Адреса некоторых каталогов: www.rambler.ru; www.yahoo.com и др.

Второе направление в поиске информации – поисковые системы (машины). Поисковые машины позволяют искать информацию по ключевым словам. Они ведут поиск заданных пользователем ключевых слов на всех доступных

страницах и выдают результат в виде списка Internet – адресов. С помощью поисковых машин можно вести детальный, тонкий поиск. Адреса некоторых поисковых систем: www.yandex.ru; www.altavista.com и др.

Главный недостаток поисковых систем – относительно низкий процент соответствия информации в списке результатов поиска. Т.е. далеко не каждый адрес в списке результатов поиска отвечает запросу пользователя. Иногда запрос пользователя сформулирован слишком широко, и результат поиска необъятно велик (десятки тысяч страниц), иногда поисковая система неправильно интерпретирует ключевые слова.

Для повышения качества поиска практически каждая поисковая система имеет два механизма. Первый – это расширенный поиск или фильтрация. Пользователь оставляет запрос без изменений, но к результату поиска может применить некоторые фильтры. Например: выбрать только самые свежие документы и т.д. Второй – использование в запросе специального синтаксиса - языка запросов. Язык запросов устраняет разночтения между пользователем и поисковой системой.

Следующий шаг повышения качества поиска – метапоисковые системы. Метапоисковые системы, как следует из названия, являются своего рода надстройками над универсальными поисковыми системами (специализированные поисковые системы, например медицинские, в эту конструкцию, как правило, не включаются). Работа метапоисковых систем основана на передаче запроса и последующем использовании ресурсов, которые находят поисковые системы. Благодаря этому полнота поиска и вероятность нахождения нужной информации увеличиваются. Примерами могут служить: www.quintura.ru; www.nigma.ru; www.exactus.ru; www.clusty.com.

Медицинские интернет-ресурсы

Информационная ёмкость всемирной сети Интернет просто огромна! Каждая сфера деятельности, любые вопросы, волнующие человека, находят своё сайтов. He отражение на множестве является здесь исключением И здравоохранение. В Сети можно найти материалы, представляющие интерес для пациентов, практикующих врачей, организаторов здравоохранения, научных работников. компаний, коммерсантов страховых И Т.Д. Существуют специфические ресурсы, интересные каждой отдельной группе, но есть и такие, которые необходимы многим.

Однако польза от интернет-ресурсов зависит от того, насколько хорошо мы их знаем. Поэтому для облегчения восприятия лучше начать с их классификации.

Итак, медицинские ресурсы (сайты или отдельные странички) сети Интернет можно разделить по **типу посетителей** и по **цели посещения**. А поскольку один сайт может предоставлять посетителям информацию разного назначения (как, например, порталы), то классифицировать мы будем не сайты целиком, а отдельные тематические группы информации (тематические ресурсы). Описанную в статье коллекцию ссылок можно найти на сайте www.it2med.ru

По типу ожидаемых посетителей ("целевая аудитория") можно выделить следующие группы ресурсов.

• Группа А – для пациентов (ресурсы, предлагающие справочную медицинскую информацию о различных заболеваниях, их симптомах, способах профилактики или простого "домашнего" лечения, о врачах и учреждениях, оказывающих соответствующую медицинскую помощь).

• Группа Б – для специалистов лечебно-диагностических подразделений (специализированная медицинская информация для специалистов практического здравоохранения и научных работников, которая может быть им полезна при проведении профилактических, лечебно-диагностических или реабилитационных мероприятий).

• Группа В – для специалистов по организации здравоохранения (законодательные и нормативные акты, справочные материалы, полезные для

организации работы и подготовки отчетности учреждений и отдельных частнопрактикующих врачей, а также аутсорсинговые ресурсы – медицинские услуги, оказываемые другими учреждениями и коммерческими фирмами по договорам).

• Группа Д – для специалистов финансово-хозяйственных служб и коммерсантов (здесь предлагается продукция, необходимая для обеспечения деятельности медицинских учреждений, – оборудование, медикаменты, расходные материалы, инструментарий, средства связи, транспорт и т. д.).

• Группа Е – для специалистов кадровых служб и поиска работы (ресурсы, предлагающие вакансии учреждений и резюме специалистов).

По цели посещения интернет – ресурса

- 1. Для поиска информации
- Для поиска услуг (медицинских, психологических, санаторно-курортных и т.д.) учреждений, фирм (в том числе зарубежных)
- 3. Для поиска лечебных и профилактических средств
- 4. Для обучения
- 5. Для бизнеса и обеспечения деятельности лечебно-профилактических учреждений (ЛПУ)
- 6. Для поиска работы и сотрудников
- 7. Для общения

Порядок выполнения

- 1. Изучите теоретический материал практической работы.
- 2. Запустите программу браузер.
- Изучите основные принципы работы этой программы получение информации через запрос в адресной строке и через гипертекстовые ссылки.
- 4. Зайдите на WWW-сайт с адресом: www.uralweb.ru и изучите основные принципы работы электронного каталога.

- 5. Зайдите на WWW-сайт с адресом: www.yandex.ru и изучите основные принципы работы поисковой системы.
- Зайдите в "Расширенный поиск" поисковой системы и изучите механизм фильтрации результатов поиска.
- 7. Найдите в разделе "Помощь" детальное описание языка запросов, изучите его и опробуйте при поиске словосочетаний.
- 8. Самостоятельно ознакомьтесь с работой еще нескольких поисковых систем: www.rambler.ru, www.altavista.com, www.yahoo.com, <u>www.hotbot.com</u>
- 9. Выберите пять, интересующих вас ссылок из предлагаемого списка и найдите интересную для вас медицинскую информацию.

Универсальные поисковые системы.

Наиболее посещаемыми (по данным SpyLog) являются: www.yandex.ru (54,83% от общего числа запросов), www.rainbier.ru (21,76%), www.google.com (15,62%), www.mail.ru (4,55%), www.aport.ru (1,56%).

В каждой системе есть свой раздел, посвященный медицине и здоровью.

Yandex.ru - "Дом/Здоровье" -

http://yaca.yandex.ra/yca/cat/Private_Life/Health; Rambler.ru – "Медицина" (http://topl00.rambler.ru/ topl00/Health) в проекте TOP-100 и проект для пациентов "Здоровье" (http://health.rambler.ru); Google.ru "Здоровье" –

http://groups.google.ru/groups/dir?sel=topic%3D46389%2C&hl=ru&; Mail.ru – "Медицина и здоровье" – http://list.mail.ru/10993/1/0_1_0_1.html; Aport.ru – "Медицина и здоровье" –

http://catalog.aport.ru/rus/themes.aspx?ID=145.

Специализированные медицинские системы и каталоги

Всеросийский медицинский портал "Банк нормативных документов" на сайте Минздравсоцразвития MED-портал MedLinks.ru Медпоиск.ру Medinfo.ru Меднавигатор.ru "Каталог медицинских ресурсов" (г.Москва) на русском Медицинском Сервере Медицинский Интернет-центр ОЗ Searchmed.ru Медицинский рынок Медицинская информационная сеть Посольство медицины MedFind Nedug.ru Градусник.ру Med2000.ru Meddesk.ru MedLib - медицинская библиотека Ваш мелицинский агент Медицина Москвы MedMax.ru Википедия-Медицина Медработники Русское медицинское обозрение Doktor.ru Доктор Мед Адреса российских медицинских сайтов Профильный каталог статей IT Medical - медицинская библиотека Русский медицинский журнал - каталог статей Medi.ru - подробно о лекарствах Wedmedinfo - каталог книг, программ рефератов по медицине Каталог Wolist - раздел "Медицина и здоровье" МИР - медицинские интернет реусрсы на сайте "МедИнформКонсалтинг"

http://www.bibliomed.ru http://www.minzdravsoc.ru/

http://www.medportal.ru http://www.medlinks.ru http://www.medpoisk.ru http://www.medinfo.ru http://www.mednavigator.ru http://www.dir.rusmedserv.ru

http://www.03.ru http://www.searchmed.ru http://www.mr.ru http://www.medicinform.net http://www.medicus.ru http://www.medfind.ru http://www.nedug.ru http://www.gradusnik.ru http://www.med2000.ru http://www.meddesk.ru http://medagent.ru http://med-lib.ru http://mosmed.info http://www.medmax.ru http://ru.wikepedia.org/wiki/медицина http://www.medrabotniki.ru http://www.ruscience.newmail.ru/medicine/ http://www.doktor.ru http://www.drmed.ru/modules.php http://www.med.ru/LINKS http://www.infamed.com/katalog/ http://www.it-medical.ru/ http://www.rmj.ru/articles.htm

http://www.medi.ru http://www.webmedinfo.ru

http://www.wolist.ru/cat/c/3820

http://www.it2med.ru/mir.html

Лабораторная работа № 17.

Поиск медицинских публикаций в базе данных "MedLine".

Любая научная работа начинается с проблемного поиска. Т.е. с того, что исследователь пытается узнать, кто в мире и насколько детально разрабатывал выбранную тему, какие результаты уже получены. Проблемный поиск позволяет определить её актуальность. Если учесть, что большинство научных разработок публикуется в научных журналах, то качественный проблемный поиск предполагает просмотр всех периодических изданий по выбранной теме. Эту нелегкую задачу помогают решить различные библиографические системы и базы данных, в которых содержаться рефераты публикуемых в мире научных статей и монографий.

Одна из самых известных библиографических систем это MedLine. Эта база данных (БД) была создана в Национальной медицинской библиотеке Национального института здоровья США в начале 80-х годов. В ней концентрируются рефераты и библиографические данные всех публикаций из более чем 4000 мировых научных журналов.

Основные достоинства БД MedLine:

- 1. Она позволяет очень быстро подобрать библиографические данные о статьях на заданную тему с конца 60-х годов по сегодняшний день;
- 2. Можно охватить порядка 70-80% всех журнальных публикаций по данной теме, чего обычно вполне достаточно;
- 3. По рефератам статей можно быстро получить представление о интересующей теме и масштабах исследований в ней;
- 4. Можно легко провести поиск по смежным вопросам.

БД MedLine издается на различных информационных носителях, но покупать ее совсем необязательно. Поиск информации в БД возможен и непосредственно через сеть Internet. Есть большое количество Web-сайтов

позволяющих посылать запросы и получать списки публикаций. Они отличаются, в основном, дизайном и набором сервисных функций. Национальная медицинская библиотека сама бесплатно предоставляет такой сервис по адресу - <u>http://www.ncbi.nlm.nih.gov/pubmed/</u>

]равка <u>В</u> ид <u>Ж</u> урнал <u>З</u> акла	адки Инструменты Справка					
- PubMed - NCBI	+		~ - •			
www.ncbi.nlm.nih.gov/pubmed/			\[] ∀ G	Google	_مر	+
S NCBI Resources ⊡ I	How To 🗹 🚽			5	ign in to NCBI	
Pub Med.gov	PubMed 👻			Search		
US National Library of Medicine	Advanced				Help	
National Institutes of Freaking		— Строка для ввода	і ключевых	СЛОВ		
	PubMed					
	Tubilied		D L M L			
	PubMed comprises n	nore than 23 million citations for biomedical literature	from Publyled	Commons		
	full-text content from	PubMed Central and publisher web sites	PubMed's new	commenting system		
			More			
			WORC			
Using PubMed		PubMed Tools	More Resour	rces		
PubMed Quick Start Guide		PubMed Mobile	MeSH Database			
Full Text Articles		Single Citation Matcher	Journals in NCBI	Databases		
PubMed FAQs		Batch Citation Matcher	Clinical Trials			
PubMed Tutonals			E-Utilities			
Vew and Noteworthy		lopic-Specific Queries	LinkOut			
(and the NODIAL Hardware)				18.4		
	PERCURPER	2001110	55 1711050	WIN	to the help besk	
DETTING STARTED	RESOURCES Chemicals & Binassays	POPULAR PubMed	FEATURED Genetic Testing Registry	About NCBI		
CBI Help Manual	Data & Software	Bookshelf	PubMed Health	Research at NCBI		
VCBI Handbook	DNA & RNA	PubMed Central	GenBank	NCBI News		
Fraining & Tutorials	Domains & Structures	PubMed Health	Reference Sequences	NCBI FTP Site		
	Genes & Expression	BLAST	Gene Expression Omnibus	NCBI on Facebook		
	Genetics & Medicine	Nucleotide	Map Viewer	NCBI on Twitter		
	Genomes & Maps	Genome	Human Genome	NCBI on YouTube		
	Homology	SNP	Mouse Genome		I	
	Literature	Gene	Influenza Virus		I	
	Proteins	Protein	Primer-BLAST		I	
	1 I Otolilo					
	Sequence Analysis	PubChem	Sequence Read Archive			
	Sequence Analysis Taxonomy	PubChem	Sequence Read Archive			
	Sequence Analysis Taxonomy Training & Tutorials	PubChem	Sequence Read Archive			

Рис. 45. Страница поиска

Поиск публикаций осуществляется по ключевым словам и фразам. Для ключевых слов на странице поиска есть строка ввода. Запрос обрабатывается после нажатия на кнопку "Search". Результат поиска – это список публикаций, в которых встречаются заданные ключевые слова и фразы.

Рис. 46. Результат поиска – список публикаций

Каждая запись в списке обычно представлена следующими полями:

- 1. Источник, в котором статья была напечатана;
- 2. Название публикации;
- 3. Авторы публикации;
- Реферат (Abstract) публикации. В реферате изложено основное содержание статьи. Для его получения необходимо выбрать нужную статью или воспользоваться ссылкой на неё;
- 5. PMID уникальный идентификатор, позволяющий быстро найти статью вновь.

Рис. 47. Выбранная статья с абстрактом

Для более детального поиска на Web-сайте предусмотрен режим "расширенного поиска" (ссылка Advanced, Рис. 48).

Этот режим позволяет задавать в запросе не только ключевые слова и фразы, но и дополнительную информацию для отбора публикаций. Например: определить какими полями пользователь хочет ограничиться при поиске или ограничить период выхода статей. Например: если пользователь точно знает автора статьи и время выхода статьи в печать, то достаточно в строке ввода набрать имя автора, установить в списке полей значение – Author и набрать время публикации статьи в полях Date - Publication.

	Журнал -	Заклалки Инстр	vменты Справка										
anced search - Pub	Med - NCBI	+											
www.ncbi.nlm.r	nih.gov/pubm	ed/advanced					57 3	e e	8 - Google			24	Ļ
NCBI Resol		How To 🔽					2				Sign in t		
PubMed Home	More F	Resources 🔻	Help	_	_		_				<u>Oigir in t</u>		
ubMed Adva	anced Se	arch Builder								You Tube	Tutorial		
	Use the b	uilder below to	create your search										
	Edit									Clea	r		
											-		
	Builder												
	[All Fields	•					0	Show index lis	t			
		All Fields	-					0	Show index lis	t			
										-			
	Search	or Add to histo	Γ¥										
	History							D	wolcad history (`lear histon			
	,									nour motory	4		
	Search	Add to buildor			Quant			0.	Itoms found	Timo			
	Search	Add to builder	Search piecerpouirus r	raplication	Query			DA	Items found	Time			
	Search <u>#1</u>	Add to builder	Search picornavirus r	replication	Query			<u>D</u>	Items found	Time 08:41:43			
	Search #1	Add to builder Add	Search picornavirus r	replication	Query				Items found	Time 08:41:43			
	Search #1	Add to builder Add	Search picornavirus r	replication	Query			<u></u>	Items found 4163	Time 08:41:43			
	Search #1	Add to builder Add	Search picornavirus r	replication	Query				Items found 4163	Time 08:41:43			
are here: NCBI >	Search #1	Add to builder Add	Search picornavirus r	replication	Query				Items found 4163	Time 08:41:43	Write to the H	ielp Desk	k
i are here: NCBI > TTING STARTED	Search #1	Add to builder Add	Search picornavirus n	replication	Query	FEAT	URED		Items found 4163	Time 08:41:43 DRMATION	Write to the H	lelp Desk	k
u are here: NCBI > TTING STARTED BI Education	Search #1	Add to builder Add PubMed RE SI Cherr	Search picornavirus r DURCES sicals & Bioassays	replication POPULI PubMed	Query	FEAT Gene	URED lic Testing Registry		Items found 4163 NCBI INFO About NCE	Time 08:41:43 DRMATION	Write to the H	lelp Desk	k
i are here: NCBI > TTING STARTED 31 Education 31 Help Manual	Search #1	Add to builder Add PubMed RES(Cherr Data	Search picornavirus r DURCES acals & Bioassays & Software	replication POPUL PubMed Bookshe	Query AR If	FEAT Gene PubM	URED ic Testing Registry ad Health		Items found 4163 NCBI INFC About NCE Research	Time 08:41:43 DRMATION 31 at NCBI	Write to the H	ielp Desk	k
I are here: NCBI > TTING STARTED 31 Education 31 Help Manual 31 Handbook	Search #1	Add to builder Add PubMed RESS Chem Data DNA	Search picornavirus r DURCES Software & RNA	POPUL PubMed Bookshe PubMed	Query AR if Central	FEAT Gene PubM GenB	URED ic Testing Registry ed Health ank		Items found 4163 NCBI INFC About NCB Research NCBI News	Time 08:41:43 DRMATION 31 at NCB1 s	Write to the H	ielp Desk	k
I are here: NCBI > ITING STARTED 31 Education 31 Help Manual 31 Hendbook ining & Tutorials	Search #1	Add to builder Add PubMed PubMed RES Cher Data DNA Doma	Search picornavirus r Search picornavirus r DURCES Sicals & Biossays & Schware & Schware & SNA wins & Structures	POPUL Publed Publed Publed Publed	Query AR If Central Health	FEAT Gene PubM Gene Refer	URED Lic Testing Registry ad Heath ank ence Sequences		NCBI INFC About NCBI INFC Research NCBI INFT S	Time 08:41:43 08:41:45 08:41:45 08:41:45 08:41:45 08:41:45 08:41:45 08:41:45 08:41:45 08:41:45 08:41:45 08:45 0	Write to the H	ielp Desk	k
u are here: NCBI > TTING STARTED BI Education BI Help Manual BI Handbook ining & Tutorials	Search #1	Add to builder Add PubMed PubMed RES Chem Data DNA DNA Gene	Search picornavirus r DURCES a Software & RNA a RNA s & Structures s & Expression	POPUL Publed Bookshe Publed Publed BLAST	Query AR if Central ideath	FEAT Gene PubM GenB Refer Gene	URED Ic Testing Registry ad Health ank ence Sequences Expression Omnibus		NCBI INFC About NCE Research NCBI INFC NCBI ON FR	Time 08:41:43 08:41:43 08:41:43 30 31 at NCBI 5 5 31 at NCBI 5 5 31 at NCBI 5 5 31 at NCBI 5 31 31 31 31 31 31 31 31 31 31 31 31 31	Write to the H	ielp Desk	k
u are here: NCBI > TTING STARTED BI Education BI Help Manual BI Handbook ining & Tutorials	Search #1	Add to builder Add OubMed RESU Cherr Data DNA Doma Gene Gene	Search picornavirus n DURCES icols & Bioassays & Software & RNA ins & Structures & & Expression tics & Medicine	POPUL Publied Bookshe Publied BLAST Nucleotic	Query AR If Central Central ie	FEAT Gene PubM GenB Refer Gene Map V	URED Ic Testing Registry de Health ank ence Sequences Expression Omnibus /lewer		Items found 4163 NCBI INFC About NCB Research NCBI INF NCBI INF NCBI INF NCBI INF	Time 08:41:43 08:41:45 08:41:45 08:41:45 08:41:45 08:41:45 08:41:45 08:41:45 08:41:45 08:41:45 08:41:45 08:41:45 08:41:45 08:41:45 08:41:45 08:41:45 08:45 0	Write to the H	ielp Desk	k
u are here: NCBI > TTING STARTED BI Education BI Help Manual BI Handbook ining & Tutorials	Search #1	Add to builder Add PubMed PubMed RESI Cherr Data DNA DNA DOma Gene Gene Geno	Search picornavirus n Search picornavirus n DURCES Solicais & Bioassays & Software & Sof	POPUL Publed Publed BLAST Nucleotic Genome	Query AR if Central Heath	FEAT Gene PubM Refer Gene Map Huma	URED Lic Testing Registry ad Health ank ence Sequences Expression Omnibus Faverer In Genome		Items found 4163 NCBI INFC About NCE Research NCBI on Yo NCBI on Yo	Time 08:41:43 08:41:43 08:41:43 08:41:43 at NCBI s s s s to cebook witter puTube	Write to the H	ielp Desk	k
u are here: NCBI > TTING STARTED BIEducation BI Help Manual BI Handbook Ining & Tutorials	Search #1	Add to builder Add	Search picornavirus r DURCES acols & Bioassays & Software & RNA s & Structures s & Expression tics & Michine mes & Maps logy	POPUL Publed Publed Publed Boolshe Publed BLAST Nucleotic Genome SNP	Query AR if Central iteath	FEAT Gene PubM GenB Refer Gene Map \ Huma Mous	URED ic Testing Registry dd Health ank: ence Sequences Expression Omnibus /fewer genome a Genome		Items found 4163 NCBI INFC About NCE Research NCBI NT NCBI ON TO NCBI ON TO NCBI ON TO	Time 08:41:43 08:41:43 08:41:43 08:41:43 at NCBI s s tat NCBI s s s s tat NCBI s s s tat s s tat s s s tat s s s s tat s s s tat s s tat s s s tat s s s s s s s s s s s s s s s s s s s	Write to the H	lelp Desk	k
u are here: NCBI > TTING STARTED 3I Education 3I Help Manual 3I Handbook Ining & Tutorials	Search #1	Add to builder Add	Search picornavirus n DURCES Licals & Bioassays & Software & RNA Bis & Structures & & Expression tics & Medicine mes & Maps logy ture	PoPUL Publied Bookshe Publied BLAST Nucleotic Genome SNP Geno	Query AR If Central Heath	FEAT Gene PubM GenB Refer Gene Map V Huma Mous Influe	URED Ic Testing Registry de Health ank ence Sequences Expression Omnibus /lewer In Genome a Genome a Genome ta 24 Virus		Items found 4163 NCBI INFC About NCB Research NCBI INF NCBI INF NCBI ON TY NCBI ON TY NCBI ON TY	Time 08:41:43 08:41:43 08:41:43 at NCBI s s s s to CBI s s s s to CBI s s s to CBI s s s to CBI s s s to CBI s s s to CBI to CBI	Write to the H	telp Desk	k
I are here: NC8I> TTING STARTED DI Education 3I Help Manual 3I Handbook Ining & Tutorials	Search #1	Add to builder Add PubMed PubMed RESU Cherr Data DNA DOm Gene Gene Gene Geno Homo Litera Prote	Search picornavirus n Search picornavirus n DURCES licals & Bioassays & Software & RNA ars & Structures & & Reversion tics & Medicine mes & Maps logy ture ins	POPULI Publication Publication Publication Publication BLAST Nucleotic Genome SNP Gene Protein	Query AR if Central teath ie	FEAT Gene Publi Refer Gene Map Huma Mouse Influe Prime	URED Lic Testing Registry ad Health ank ence Sequences Expression Omnbus //ewer n Genome 2 Genome 12a V/rus - BJAST		Items found 4163 NCBI INFC About NCE Research NCBI on FR NCBI on FR NCBI on FR	Time 08:41:43 08:41:4	Write to the H	ielp Desk	k
u are here: NCBI > TTING STARTED 3I Education 3I Heip Manual 3I Handbook ining & Tutorials	Search #1	Add to builder Add	Search picornavirus r DURCES icols & Bioasays & Software & RNA is & Structures s & Expression tics & Medicine mes & Maps logy ture ins ence Analysis	POPUL Publed Publed Publed Boolshe Publed BLAST Nucleotic Genom SNP Gene Proten Publed	Query AR if Central Health Ie	FEAT Gene PubM GenB Refer Gene Map U Huma Mous Influe Prime Sequ	URED ic Testing Registry d Health ank: ence Sequences Expression Omnibus /ilewer a Genome a Genome a Genome a Genome a Genome caturus - cBLAST - conce Read Archive		Items found 4163 NCBI INFC About NCE Research NCBI NT NCBI ON TV NCBI ON TV NCBI ON TV	Time 08:41:43 08:41:43 08:41:43 30 at NCBI s s s at NCBI s s s acebook witer puTube	Write to the H	lelp Desk	k
u are here: NCBI> ITING STARTED SI Education II Help Manual II Handbook Ining & Tutorials	Search #1	Add to builder Add	Search picornavirus n DURCES isas & Bioassays & Software & RNA isa & Structures & & Expression tics & Medicine mes & Maps logy ture ins ence Analysis omy	PoPUL Publied Bookshe Publied BLAST Nucleotic Genom SNP Gene Protein PubCher	Query AR If Central Leath	FEAT Gene PubM Refer Gene Map V Huma Mous Influe Prime Sequ	URED Lic Testing Registry ad Health ank ence Sequences Expression Omnbus Forver n Genome a Genome a Genome ta Virus -BLAST ence Read Archive		Items found 4163 NCBI INFC About NCB Research NCBI NEW NCBI OT P NCBI OT P NCBI OT Y NCBI OT Y	Time 08:41:43 08:41:43 00 at NCBI s s s te acebook witter puTube	Write to the H	ielp Desk	k
u are here: NCBI > TTING STARTED 3I Education 3I Help Manual 3I Handbook Ining & Tutorials	Search #1	Add to builder Add PubMed PubMed PubMed RE SI Cherr Data DNA DOm Gene Gene Gene Gene Gene Gene Gene Taxoo Traini	Search picornavirus n DURCES sicals & Bioassays & Software & RNA & RNA & RNA & RNA & Back & Back & Structures & & Expression tics & Medicine mes & Maps logy ture mes & Maps logy ture ne ence Analysis hony og & Tutrials	POPUL Publication Publication Publication Publication BLAST Nucleotic Genome SNP Gene Protein PubChen	Query AR If Central leeath	FEAT Gene Publi Refer Gene Map V Huma Mous Influe Prime Seque	URED Lic Testing Registry ad Health ank ence Sequences Expression Ombuss fewer n Genome 12 Okrome 12 Okrome 12 AST Honce Read Archive		Items found 4163 NCBI INFC About NCE Research NCBI on FR NCBI on FR NCBI on FR	Time 08:41:43 08:41:43 08:41:43 at NCBI s s Site s s s te box Witer box Tube	Write to the H	Kelp Desk	k

Рис. 48. Окно расширенного поиска

Порядок выполнения

- 1. Запустите браузер.
- 2. Зайдите на страницу с адресом: <u>http://www.ncbi.nlm.nih.gov/pubmed/</u>
- 3. Используя обычный и расширенный режим поиска, по имеющимся данным, найдите перечисленные ниже публикации.
- 4. Оформите результаты поиска на отдельном листе по следующей схеме:
 - 4.1. Ф.И.О., группа, № варианта;
 - 4.2. Информация по каждой найденной публикации:
 - 1) Источник -;
 - 2) Название ;
 - 3) Авторы ;
 - 4) PMID (PubMed index, идентификационный номер) ;

Статьи для поиска:

1.

Источник - J Egypt Soc Parasitol 1999;29(3):1007-15

Название - Production of pro-inflammatory cytokines (GM-CSF, IL-8 and IL-6) by monocytes from fasciolosis patients.

Авторы - ? PMID – ? 2. Источник - J Egypt Soc Parasitol 1999;29(1):149-56 Название - ? Авторы - Abo-Shousha S, Khalil SS, Rashwan EA. PMID - ?

3.

Источник - ?

Название - Coupling of contact sensitizers to thiol groups is a key event for the activation of monocytes and monocyte-derived dendritic cells.

Авторы - Becker D, Valk E, Zahn S, Brand P, Knop J.

PMID - ?

4.

Источник – Dis Mon 2003 Jan;49(1):7-13

Название – ?

Авторы - Osterud B.

PMID - ?

5.

Источник - ?

Название - ?

Авторы - ?

PMID - 12529998

Статьи для поиска:

1.

Источник - J Pharmacol Exp Ther. 2003 Jan;304(1):185-91.

Название - Human kidney flavin-containing monooxygenases and their potential roles in cysteine s-conjugate metabolism and nephrotoxicity.

Авторы - ? **PMID** – ? 2. Источник - Cereb Cortex. 2002 Dec;12(12):1269-79. Название - ? Авторы - Yang Z, Seif I, Armstrong-James M. **PMID - ?** 3. Источник - ? Название - Genetics. Rethinking behavior genetics. Авторы - Hamer D. **PMID - ?** 4. Источник – J Neurosci. 2002 Oct 1;22(19):8541-52. Название – ? Авторы - Rebsam A, Seif I, Gaspar P. **PMID - ?** 5. Источник - ? Название - ? Авторы - ? **PMID -** 12203266

Статьи для поиска:

1.

Источник - Gynecol Oncol. 2003 Jan;88(1 Pt 2): S105-9

Название - Specific keynote: immunological therapy for ovarian cancer.

Авторы - ?

PMID – ?

2.

Источник - Circulation. 2003 Feb 11;107(5):E39-9.

Название - ?

Авторы - Hellstrom HR.

PMID - ?

3.

Источник - ?

Название - Rituximab for BCL-2-positive cancers.

Авторы - Boughton B.

PMID - ?

4.

Источник – Arch Pathol Lab Med. 2003 Feb;127(2):193-5.

Название – ?

Авторы - Bejarano PA, Mousavi F.

PMID - ?

5.

Источник - ?

Название - ?

Авторы - ?

PMID - 12555658

Статьи для поиска:

1.

Источник - JAMA. 2003 Feb 5;289(5):548; author reply 549.

Название - Racial differences in rates of traumatic lumbar puncture.

Авторы - ?

PMID – ?

2.

Источник - J Pediatr Hematol Oncol. 2003 Feb;25(2):114-7

Название - ?

Авторы - Bostrom BC, Erdmann GR, Kamen BA.

PMID - ?

3.

Источник - ?

Название - Comments from the editor-in-chief.

Авторы - Arceci RJ.

PMID - ?

4.

Источник – Arch Pathol Lab Med. 2003 Feb;127(2):E93-5.

Название – ?

Авторы - Lee PS, Lin CN, Liu C, Huang CT, Hwang WS.

PMID - ?

5.

Источник - ?

Название - ?

Авторы - ?

PMID - 12553204

Статьи для поиска:

1.

Источник - Lancet Infect Dis. 2003 Feb;3(2):79-86.

Название - Adenovirus: an increasingly important pathogen in paediatric bone marrow transplant patients.

Авторы - ? **PMID** – ? 2. Источник - Am J Trop Med Hyg. 2003 Jan;68(1):48-53. Название - ? Авторы - Espina LM, Valero NJ, Hernandez JM, Mosquera JA. **PMID - ?** 3. Источник - ? Название - Second messenger control of chromatin remodeling. Авторы - Rando OJ, Chi TH, Crabtree GR. **PMID - ?** 4. Источник – J Leukoc Biol. 2003 Feb;73(2):263-72. Название – ? Авторы - Guyot B, Mouchiroud G. **PMID - ?** 5. Источник - ? Название - ? Авторы - ? **PMID -** 12553685

Статьи для поиска:

1.

Источник - ?

Название - Coupling of contact sensitizers to thiol groups is a key event for the activation of monocytes and monocyte-derived dendritic cells.

Авторы - Becker D, Valk E, Zahn S, Brand P, Knop J.

PMID - ?

2.

Источник - J Egypt Soc Parasitol 1999;29(3):1007-15

Название - Production of pro-inflammatory cytokines (GM-CSF, IL-8 and IL-6) by monocytes from fasciolosis patients.

Авторы - ? PMID - ?3. Источник – Dis Mon 2003 Jan;49(1):7-13 Название – ? Авторы - Osterud B. **PMID** - ? 4. Источник - J Egypt Soc Parasitol 1999;29(1):149-56 Название - ? Авторы - Abo-Shousha S, Khalil SS, Rashwan EA. **PMID - ?** 5. Источник - ? Название - ? Авторы - ? **PMID -** 12552459

Статьи для поиска:

1.

Источник - ?

Название - Comments from the editor-in-chief.

Авторы - Arceci RJ.

PMID - ?

2.

Источник - JAMA. 2003 Feb 5;289(5):548; author reply 549.

Название - Racial differences in rates of traumatic lumbar puncture.

Авторы - ?

PMID – ?

3.

Источник – Arch Pathol Lab Med. 2003 Feb;127(2):E93-5.

Название – ?

Авторы - Lee PS, Lin CN, Liu C, Huang CT, Hwang WS.

PMID - ?

4.

Источник - J Pediatr Hematol Oncol. 2003 Feb;25(2):114-7

Название - ?

Авторы - Bostrom BC, Erdmann GR, Kamen BA.

PMID - ?

5.

Источник - ?

Название - ?

Авторы - ?

PMID - 12552445

Статьи для поиска:

1.

Источник - ?

Название - Genetics. Rethinking behavior genetics.

Авторы - Hamer D.

PMID - ?

2.

Источник - J Pharmacol Exp Ther. 2003 Jan;304(1):185-91.

Название - Human kidney flavin-containing monooxygenases and their potential roles in cysteine s-conjugate metabolism and nephrotoxicity.

Авторы - ?

PMID – ?

3.

Источник – J Neurosci. 2002 Oct 1;22(19):8541-52.

Название – ?

Авторы - Rebsam A, Seif I, Gaspar P.

PMID - ?

4.

Источник - Cereb Cortex. 2002 Dec;12(12):1269-79.

Название - ?

Авторы - Yang Z, Seif I, Armstrong-James M.

PMID - ?

5.

Источник - ?

Название - ?

Авторы - ?

PMID - 12551864

Статьи для поиска:

1. Источник - ? Название - Rituximab for BCL-2-positive cancers. **Авторы** - Boughton B. **PMID** - ? 2. Источник - Gynecol Oncol. 2003 Jan;88(1 Pt 2): S105-9 Название - Specific keynote: immunological therapy for ovarian cancer. Авторы - ? **PMID** – ? 3. Источник – Arch Pathol Lab Med. 2003 Feb;127(2):193-5. Название – ? Авторы - Bejarano PA, Mousavi F. **PMID - ?** 4. Источник - Circulation. 2003 Feb 11;107(5):E39-9. Название - ? Авторы - Hellstrom HR. **PMID - ?** 5. Источник - ? Название - ? Авторы - ? **PMID** – 12546883

5. Учебная исследовательская работа студента Варианты задания к УИРС по медицинской информатике «Пациенты с сердечнососудистыми заболеваниями».³

Таблица 1.

	А	В	С	D	E	F	G	Н
Nº	Систоли- ческое давление	Потреб- ление табака (кг)	ЛПНП холе- стерин	Уровень жира в тканях	Уровень стресса	Индекс массы тела	Потре- бление алкоголя	Возраст заболе- вания
	••••	•••	•••	••••		•••	•••	•••

В таблице 1 переменные A,B,C,D,E,F,G,H представляют анализируемые параметры, выраженные числами по интервальной шкале или же по шкале отношений. Наблюдения (их в оригинальной таблице 462) соответствуют числу обследованных пациентов и представляют собой, по сути, результаты измерения функциональных параметров организма (одна строка соответствует одному пациенту).

Согласно данным таблицы 2 студент получает свой вариант из двух переменных и 50 наблюдений. <u>Пример</u>: вариант 15 (401-450) - выполнить корреляционный и регрессионный анализ для двух зависимых выборок из таблицы 1. Переменные - С и D, число пациентов в выборке n = 50 (с 401 по 450).

Таблица 2.

Nº	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1-50	AB	AC	AD	AE	AF	AG	AH	BC	BD	BE	BF	BG	BH	CE
51-100	AB	AC	AD	AE	AF	AG	AH	BC	BD	BE	BF	BG	BH	CE
101-150	AB	AC	AD	AE	AF	AG	AH	BC	BD	BE	BF	BG	BH	CE

³ Таблица взята из папки примеры, прилагающиеся к 10-ой версии программы Statistica.

151-200	AB	AC	AD	AE	AF	AG	AH	BC	BD	BE	BF	BG	BH	CE
201-250	AB	AC	AD	AE	AF	AG	AH	BC	BD	BE	BF	BG	BH	CE
251-300	AB	AC	AD	AE	AF	AG	AH	BC	BD	BE	BF	BG	BH	CE
301-350	AB	AC	AD	AE	AF	AG	AH	BC	BD	BE	BF	BG	BH	CE
351-400	AB	AC	AD	AE	AF	AG	AH	BC	BD	BE	BF	BG	BH	CE
401-450	AB	AC	AD	AE	AF	AG	AH	BC	BD	BE	BF	BG	BH	CE

Nº	15	16	17	18	19	20	21	22	23	24	25	26	27	28
1-50	CD	CE	CF	CG	CH	DE	DF	DG	DH	EF	EG	EH	FG	FH
51-100	CD	CE	CF	CG	CH	DE	DF	DG	DH	EF	EG	EH	FG	FH
101-150	CD	CE	CF	CG	CH	DE	DF	DG	DH	EF	EG	EH	FG	FH
151-200	CD	CE	CF	CG	CH	DE	DF	DG	DH	EF	EG	EH	FG	FH
201-250	CD	CE	CF	CG	CH	DE	DF	DG	DH	EF	EG	EH	FG	FH
251-300	CD	CE	CF	CG	CH	DE	DF	DG	DH	EF	EG	EH	FG	FH
301-350	CD	CE	CF	CG	CH	DE	DF	DG	DH	EF	EG	EH	FG	FH
351-400	CD	CE	CF	CG	CH	DE	DF	DG	DH	EF	EG	EH	FG	FH
401-450	CD	CE	CF	CG	CH	DE	DF	DG	DH	EF	EG	EH	FG	FH

Задание выполняется в файле Excel, затем результаты копируются в файл Word в виде отчета. Обоим файлам присваивается имя: УИРС – ФИО – группа - вариант.

Для выполнения задания требуется:

- 1. Скопировать в Excel из таблицы 1 столбцы с данными согласно заданию.
- Создать таблицу «Описательные статистики» для каждого столбца данных. <u>Указание</u>: использовать предварительно активированные надстройки «Пакет анализа», а именно вкладки «Данные» и «Анализ».
- Построить гистограмму для каждой переменной и оценить визуально правомерность использования гипотезы о нормальном законе распределения.
 Сделать предварительный вывод с использованием данных таблиц «Описательные статистики».

- Проверить гипотезу о нормальном законе распределения для каждой переменной с помощью критерия хи-квадрат (χ²). Сделать вывод о принятии или не принятии гипотезы о нормальном законе распределения для наших переменных.
- 5. Выделить оба столбца и, используя вкладки «Вставка», «Точечные диаграммы» построить диаграмму, по осям которой отложены значения х и у, соответствующие двум наблюдениям для каждого из 50 пациентов. При этом каждая точка на диаграмме соответствует одному из пациентов. Поместить на диаграмме заголовок «Поле корреляции» (так мы назовем нашу точечную диаграмму), линию регрессии и её уравнение, а также величину достоверности аппроксимации.

<u>Указание</u>: щелкнуть левой кнопкой мыши на точках диаграммы, щелкнуть правой кнопкой и в контекстном меню выбрать команду «Добавить линию тренда». В открывшемся окне отметить галочками: показывать уравнение на диаграмме, а также - поместить на диаграмму величину достоверности аппроксимации.

 Найти коэффициент линейной корреляции Пирсона, его значимость *T* и критическое значение коэффициента Стьюдента *t^{кp.}*. Сделать вывод о знаке, величине и статистической значимости корреляции.

Указание:

Для нахождения коэффициента корреляции используем КОРРЕЛ (массив1; массив2) Для определения значимости корреляции находим $T = \frac{R \cdot \sqrt{n-2}}{\sqrt{1-R^2}}$ Критическое значение коэффициента Стьюдента $t_{\alpha,n-2}^{\text{кр.}}$ для уровня значимости α находим с помощью функции СТЬЮДРАСПОБР (0,05; 48). Если $T > t^{\text{кр.}}$ корреляция значима. Определить коэффициент ранговой корреляции Спирмена, проверить его значимость. Сделать вывод о знаке, величине и статистической значимости корреляции.

<u>Указание</u>: (при расчете коэффициента Спирмена можно взять только первые 30 наблюдений).

Примерная методика расчета коэффициента Спирмена (см. также стр.34).

- Копируем 2 столбика данных на отдельный лист.
- Выделим 1-ый столбик и упорядочим его по возрастанию (используем опцию: автоматически расширять выделенный диапазон). При этом 1-ый столбец сортируется по возрастанию, а во 2-ом числа переставляются в связке с первым столбиком.
- Вырезаем 2-ой столбик и переносим его на 1 клетку вправо. Освободившееся место займут ранги для 1-го столбика (от 1 до 50). Если числа в 1-ом столбике повторяются – присваиваем им средний ранг.
- Копируем 2-ой столбик и переносим копию на 2 клетки вправо (место оставляем для рангов 2-го столбика и для расчета разности рангов).
 Упорядочиваем копию 2-го столбика по возрастанию и присваиваем ранги.
- Найденные ранги ставим в пустые клетки рядом со 2-ым столбиком.
- Находим $(r_i s_i)$.
- Находим $S = \sum (r_i s_i)^2$ с помощью встроенной функции СУММКВ.
- Находим коэффициент Спирмена по формуле (стр. 34).
- 8. Отчет представить в файле Word, страницы пронумеровать, снабдить его титульным листом и поместить в Тандеме в разделе медицинская физика в своей личной папке.

Оценка по десятибалльной шкале предполагает обязательное выполнение п.8:

- первые пять заданий по 1 баллу плюс балл за п.8.
- 6-е задание 2 балла.
- 7-е задание 2 балла

Рекомендуемая литература

1. Гланц С. Медико-биологическая статистика. // - М.: Практика, 1999, 459 с.

2. Гублер Е.В. Вычислительные методы анализа и распознавания патологических процессов. // - М.: Медицина, 1978, 296 с.

3. Телешев В.А., Бляхман Ф.А. Методология преподавания медицинской информатики по ФГОС третьего поколения. // Сборник статей и тезисов докладов Всероссийской научно-практической конференции «Социальные и гуманитарные аспекты стратегии инновационного развития медицинского университета», Екатеринбург, 2013, С. 24-26

4. Фишер Р.А. Статистические методы для исследователей. // - М.: Госстатиздат, 1958, 267 с.

Приложение

Описание программы MStat

Программа *Mstat*, имеющая простой и интуитивно понятный интерфейс, предназначена для статистического анализа данных и частным случаям применения его в медицине.

Окно программы состоит из заголовка, строки меню, панели инструментов, рабочего листа.

Для ввода данных выберите ячейку, введите число и нажмите клавишу <Enter>. Разделителем между целой и дробной частями числа является

запятая. Для редактирования ячейки с данными выберите изменяемую ячейку и введите новые данные.

Сохранение данных набранных в программе осуществляется с помощью диалогового окна, в котором пользователю будет предоставлена возможность, выбрать путь и имя сохраняемого фала. Для открытия нового рабочего листа необходимо в строке меню выбрать меню *Файл ->Новый*, либо нажать эквивалентную кнопку на панели инструментов.

Доступ к окну анализа данных осуществляется путем выбора опции меню «Анализ», в строке меню или нажатием одноименной кнопки на панели инструментов.

Статистические таблицы

Таблица № 1

n _ 1	Довер (У1	ительная вероя оовень значимо	итность <i>ф</i> ости р)
<i>n</i> 1	0,80 (0,2)	0,95 (0,05)	0,99 (0,01)
1	3,08	12,7	63,7
2	1,89	4,30	9,92
3	1,64	3,18	5,84
4	1,53	2,78	4,60
5	1,48	2,57	4,03
6	1,44	2,45	3,71
7	1,42	2,36	3,50
8	1,40	2,31	3,36
9	1,38	2,26	3,25
10	1,37	2,23	3,17
20	1,33	2,09	2,85
30	1,31	2,04	2,75
60	1,30	2,00	2,66

Критические значения коэффициентов Стьюдента *t* для выборки объема *n* и заданной доверительной вероятности

Таблица № 2

Максимальное число знаков, при которых различия в парных сравнениях можно считать существенными

	Уровень за	начимости р	n	Уровень з	начимости р
Π	0,05	0,01		0,05	0,01
6	0	0	15	3	2
7	0	0	16	4	2
8	1	0	17	4	3
9	1	0	18	5	3
10	1	0	19	5	4
11	2	1	20	5	4
12	2	1	30	10	8
13	3	1	40	14	12
14	3	2	50	18	16

Критические значения Q-критерия Розенбаума

Минимальные значения Q, при которых различия между двумя выборками можно считать значимыми с вероятностью 95% (p=0,05) и с вероятностью 99% (p=0,01). Для выборок, в которых больше чем 26 элементов, критические значения Q = 8 (при p=0,05) и Q = 10 (при p=0,01).

n	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
							p	=0,0	5							
11	6															
12	6	6														
13	6	6	6													
14	7	7	6	6												
15	7	7	6	6	6											
16	7	7	7	7	6	6										
17	7	7	7	7	7	7	7									
18	7	7	7	7	7	7	7	7								
19	7	7	7	7	7	7	7	7	7							
20	7	7	7	7	7	7	7	7	7	7						
21	8	7	7	7	7	7	7	7	7	7	7					
22	8	7	7	7	7	7	7	7	7	7	7	7				
23	8	8	7	7	7	7	7	7	7	7	7	7	7			
24	8	8	8	8	8	8	8	8	8	8	7	7	7	7		
25	8	8	8	8	8	8	8	8	8	7	7	7	7	7	7	
26	8	8	8	8	8	8	8	8	8	8	7	7	7	7	7	7
n	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
							р	=0,0	1							
11	9															
12	9	9	-													
13	9	9	9	0												
14	9	9	9	9	0											
15	9	9	9	9	9	0										
10	9 10	9	9	9	9	9	0									
1/	10	9 10	9	9	9	9	9	0								
10	10	10	9	9	9	9	9	9	0							
20	10	10	10) 10	<i>y</i>	9	9	9	<i>y</i>	0						
20	11	10	10	10	9	9	9	9	9	9	9					
22	11	11	10	10	10	9	9	9	9	9	9	9				
23	11	11	10	10	10	10	9	9	9	9	9	9	9	1		
24	12	11	11	10	10	10	10	9	9	9	9	9	9	9		
25	12	11	11	10	10	10	10	10	9	9	9	9	9	9	9	
26	12	12	11	11	10	10	10	10	10	9	9	9	9	9	9	9

Число степеней	Уровень зн	ачимости р	Число	Уровень з	начимости р
свободы	0,05	0,01	свободы	0,05	0,01
1	3,841	6,635	16	26,296	32,000
2	5,991	9,210	17	27,587	33,409
3	7,815	11,345	18	28,869	34,805
4	9,488	13,277	19	30,144	36,191
5	11,070	15,086	20	31,410	37,566
6	12,592	16,812	21	32,671	38,932
7	14,067	18,475	22	33,924	40,289
8	15,507	20,090	23	35,172	41,638
9	16,919	21,666	24	36,415	42,980
10	18,307	23,209	25	37,652	44,314
11	19,675	24,725	26	38,885	45,642
12	21,026	26,217	27	40,113	46,963
13	22,362	27,688	28	41,337	48,278
14	23,685	29,141	29	42,557	49,588
15	24,996	30,578	30	43,773	50,892

Критические точки распределения χ^2

Таблица № 5

Критические значения коэффициента ранговой корреляции Спирмена

	Уровень зі	начимости <i>р</i>
n	0,05	0,01
6	0,886	1,0
7	0,786	0,929
8	0,738	0,881
9	0.70	0,833
10	0,648	0,794
15	0.521	0.654
20	0,447	0,570
25	0.398	0,511
30	0,362	0,467

					B	ыборк	и (знач	ения г	араме	тров у	30 пац	иенто	в)			
№	Пациенты Исспелуемый	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	параметр	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	Длительность фазы инфекц.	18,3	31,1	27	37,9	20,3	32,4	31,2	39,7	46,6	33,1	26,9	24	24,2	33,7	18,5
1	заболевания (дней)	17,2	19	24,8	21,5	14,5	33,7	19,3	23,9	28	30,9	27,2	29,9	34,9	24,4	37,4
2	6 MUUNTUU VI TOOT VOUL 61 (M)	300	420	330	280	330	350	260	290	240	360	320	270	310	310	360
2	о минутный тест ходьоы (м)	650	450	330	330	250	300	400	370	420	420	330	390	340	300	460
3		98	95	86	90	102	101	95	98	94	89	96	97	100	92	94
5	Сатурация (70)	94	95	97	97	95	89	97	95	98	96	87	101	88	94	95
Δ	Систолическое артериальное	144	118	170	134	132	142	114	114	132	206	134	118	132	112	117
	давление (мм.рт.ст.)	120	146	158	124	106	132	150	138	142	124	118	145	144	146	136
5	Уровень вредных веществ в	6,5	10,3	7,7	15,8	7,4	14,3	15,4	21,1	22,1	12	9,5	8,1	8,4	7,3	13,8
5	крови (мг/л)	15,3	4,3	9,3	5,7	12,9	5,1	3,8	17,1	8,2	8,1	11,7	13	15,3	13,5	10,5
6	Табак	0,01	0,08	7,5	13,6	6,2	4,05	4,08	0	0	6	14,1	0	0	9,65	1,53
0	(кг)	7,5	10,5	2,6	14	1,61	7,9	0,3	0,6	18,2	4	6	9,1	4,09	0	2,52
7	Сталия ХОБЛ	2	3	4	2	4	2	4	1	4	2	4	2	2	3	2
,		1	1	3	3	2	2	4	1	4	3	4	3	3	1	1
8	Ожирение	28,61	32,28	38,03	27,78	36,21	16,2	14,6	19,4	30,96	32,27	22,39	10,05	17,21	17,2	28,95
0	(уровень жиров. ткани (ммоль/л))	22	35,36	34,07	35,96	12,32	26,5	33,99	28,66	24,38	31,29	33,91	27,55	31,4	25,69	25,63
0	Ожирение	28,87	29,14	31,99	25,99	30,77	20,81	23,11	24,86	30,11	26,81	23,09	21,57	23,63	23,53	25,89
9	(индекс массы тела (кг/м ²))	25,31	32,73	29,3	30,09	20,92	26,16	24,64	28,7	26,19	23,23	38,8	20,96	29,43	28,07	21,86
10	Лейкоциты	6,83	6,51	6,90	7,05	7,20	6,95	6,70	6,50	6,70	6,72	6,58	7,2	6,75	6,83	6,85
10	(10 ⁹ /л)	7,20	6,92	7,03	7,52	7,48	7,10	7,25	7,00	6,60	6,68	6,9	7,3	7,18	7,05	7,00
11	Гемоглобин	120	160	135	125	137	145	154	133	139	158	154	146	135	136	140
11	(г/л)	156	150	157	141	137	136	136	132	133	137	128	141	136	138	130
12		4,41	3,48	6,41	3,5	6,47	3,38	4,59	3,83	5,8	2,95	4,44	1,88	1,87	2,29	2,44
12	холестерин (ммоль/л)	15,33	8,29	7,46	6,23	1,74	2,85	6,38	3,81	4,34	12,42	9,65	5,24	5,55	6,62	3,95
13	Vпотребление элиоголя	2,06	3,81	24,26	57,34	14,14	2,62	6,72	2,49	0	56,06	0	0	0,97	0,68	30,03
15	з потреоление алкоголя	34,49	13,89	53,28	0	13,37	25,71	0	1,46	0	2,06	0	21,6	5,55	8,23	0
14	Kahactda whonn	37,5	72,8	83,5	24,7	38,2	73,2	61,3	52,7	73,2	60,1	65,7	45,2	48,9	68,6	73,6
14	Να Ίνι Ι Ου Μήρπη	42,2	33,3	56,9	67,7	45,0	43,3	41,9	52,8	46,1	35,9	52,5	50,0	54,8	54,5	16,9

Таблица № 7

	Общий белок крови (г/%)		Калий мочи (г/сут)		Норадреналин мочи (мкг/сут)		Свободный гепарин крови (мг/%)		Содержание АКП (мл ед.)		Связанный холестерин (мг/%)	
N⁰	1	2	3	4	5	6	7	8	9	10	11	12
	норма	гепатит	норма	легочная недоста- точность	норма	грудная жаба	норма	стоматит	норма	беременность 40 недель	норма	себорея
1	6,83	7,20	2,1	0,8	60,5	36,9	5,7	13,9	32,1	78,0	58,9	93,0
2	6,51	6,92	2,0	2,0	55,6	50,5	9,5	9,0	40,5	60,0	53,1	73,7
3	6,90	7,03	1,9	0,9	57,8	46,1	7,0	11,0	35,0	71,0	65,0	72,5
4	7,05	7,52	1,8	0,8	63,3	36,5	6,6	10,3	29,5	76,0	70,0	71,0
5	7,20	7,48	1,9	0,7	68,1	44,8	5,0	13,0	35,7	84,5	64,0	73,0
6	6,95	7,10	2,2	0,7	61,5	52,0	8,5	9,5	24,5	38,5	62,0	76,8
7	6,70	7,25	2,0	1,0	59,0	40,1	6,0	10,0	30,0	48,0	72,0	70,0
8	6,75	7,18	1,8	0,9	61,0	43,5	4,5	14,7	26,4	53,5	75,0	77,0
9	6,83	7,05	2,1	0,7	63,8	38,5	5,0	12,0	29,2	40,5	58,3	102,0
10	6,85	7,00	2,1	0,8	60,1	38,3	5,6	13,1	33,0	68,0	56,8	78,0
11	7,10	6,95	1,9	1,5	50,5	41,0	11,0	12,5	45,0	63,0	60,0	80,5
12	6,72	6,90	2,0	1,6	48,2	54,5	2,5	13,5	25,0	70,5	61,0	81,0
13	6,55	7,07	1,8	1,0	52,0	45,0	5,9	15,7	33,0	91,5	64,1	112,0
14	6,82	7,15	1,9	1,1	47,5	48,5	6,3	14,7	28,2	53,0	59,3	93,0
15	6,95	6,88	1,6	1,2	43,0	39,0	12,0	10,5	42,5	45,0	67,5	87,5
16	6,62	7,15	1,4	0,9	54,5	48,8	5,5	9,0	48,0	68,5	66,0	71,5
17	7,03	6,94	1,5	1,3	49,5	52,0	3,7	13,5	31,8	93,0	67,0	74,0
18	6,89	7,30	2,0	0,8	51,8	50,5	4,0	12,0	37,5	80,0	53,3	98,5
19	6,92	7,05	1,4	1,1	43,3	53,0	6,0	11,5	44,0	38,5	61,1	87,0
20	6,77	6,80	1,3	1,0	46,2	54,5	7,5	15,3	43,5	52,0	51,0	79,0

Таблица № 7 (продолжение)

Nº	С три	одержание йодтиронина (мкг/%)	Сод общего (м	ержание) тироксина 1кг/%)	К пла: незре слизи к	оличество зматических слых клеток в истой толстой ишки (%)	Содержание нейтральных жиров в сыворотке крови(мг/%)	
	13	14	15	16	17	18	19	20
	норма	тиреотоксикоз	норма	гипотиреоз	норма	тиреотоксикоз	норма	гипотиреоз
1	1,25	3,35	10,5	1,9	1,25	3,35	10,5	1,9
2	1,40	2,10	5,0	1,8	1,40	1,40 2,10		1,8
3	1,32	2,90	6,5	1,6	1,32	2,90	6,5	1,6
4	1,35	3,05	7,3	1,7	1,35	3,05	7,3	1,7
5	1,50	5,40	9,0	1,5	1,50	5,40	9,0	1,5
6	1,31	1,70	5,7	3,6	1,31	1,70	5,7	3,6
7	1,72	4,80	5,4	1,6	1,72	4,80	5,4	1,6
8	1,65	1,60	6,8	2,0	1,65	1,60	6,8	2,0
9	1,40	4,56	5,2	1,8	1,40	4,56	5,2	1,8
10	1,35	5,25	4,4	1,0	1,35	5,25	4,4	1,0
11	1,80	5,55	10,0	1,9	1,80	5,55	10,0	1,9
12	1,30	4,60	7,0	2,5	1,30	4,60	7,0	2,5
13	1,15	5,01	4,1	0,7	1,15	5,01	4,1	0,7
14	1,35	6,03	6,5	0,8	1,35	6,03	6,5	0,8
15	1,40	4,35	4,4	1,0	1,40	4,35	4,4	1,0
16	1,25	1,50	5,0	1,3	1,25	1,50	5,0	1,3
17	1,45	4,00	6,0	4,2	1,45	4,00	6,0	4,2
18	1,75	2,02	9,9	2,1	1,75	2,02	9,9	2,1
19	1,21	2,65	8,5	2,4	1,21	2,65	8,5	2,4
20	1,40 3,00		8,0	2,2	1,40	3,00	8,0	2,2

Таблица № 7 (продолжение)

No	Скорость альдос	секреции стерона	Скорость секреции кортизола		Средняя частота сердцебиений		Содер тироксина 1	жание з сыворотке	Средняя частота сердцебиений	
51≅	(мкг/сут)		(мкг/сут)		плода (1/мин)		крови (мкг/100 мл)		в покое (1/мин)	
п.п.	21	22	23	24	25	26	27	28	29	30
	норма	ожирение	норма	болезнь Аддисона	беремен- ность 25 нед.	беремен- ность 36 нед.	норма	тирео- токсикоз	нетрени- рованный	трениро- ванный
1	136	370	20,3	6,1	150	141	5,4	14,2	62	51
2	92	274	16,1	2,5	147	125	4,3	16,0	71	55
3	104	337	13,0	4,2	155	136	7,0	13,8	75	63
4	82	326	19,5	10,5	142	143	5,2	17,0	78	68
5	107	281	14,0	8,5	150	129	6,6	19,5	64	59
6	119	349	22,2	5,0	135	130	7,4	15,0	57	64
7	151	403	13,4	7,5	161	134	7,2	18,5	71	67
8	114	250	12,0	6,0	147	139	6,4	23,0	72	58
9	102	315	12,8	3,8	159	121	8,2	16,2	77	52
10	113	358	11,5	7,7	144	132	7,3	19,2	70	49
11	105	294	24,0	3,5	157	126	6,1	21,5	67	70
12	98	271	20,0	7,4	138	133	4,8	14,0	64	72
13	111	299	9,5	9,2	153	129	8,6	20,5	61	60
14	116	334	15,2	2,0	142	122	7,6	24,6	63	62
15	99	276	17,0	4,3	138	135	9,2	12,2	68	47
16	141	389	13,5	4,9	153	142	6,1	26,5	79	51
17	136	367	19,0	5,4	137	120	4,9	20,8	73	54
18	123	341	16,5	9,7	142	137	8,3	9,5	69	58
19	147	377	19,6	2,6	148	152	4,2	19,8	83	53
20	125	307	15,0	8,8	130	154	6,6	19,0	81	58

Таблица № 8

	Эффективн антиарит лекарственн трех дневны	ость приема тмических ных средств с м перерывом	Концентрация лизоцима у пациентов с бронхиальной астмой		Содержание сахара в крови (в мг %)		Эффективность приема антиаритмического препарата		Выраженность болевых ощущений по визуально- аналоговой шкале у больных, страдающих мигренью	
N⁰	1	2	3	4	5	6	7	8	9	10
	ЧСС через 1 час после приема лекарств. препарата А	ЧСС через 1 час после приема лекарств. препарата Б	До лечения (%)	После лечения (%)	до работы	после работы	Частота пульса до приема препарата	Частота пульса после приема препарата	До сеанса иглоука- лывания	После сеанса иглоука- лывания
1	64	80	40,25	48,66	112	54	72	82	9	7
2	66	76	41,96	49,64	82	67	74	76	9	6
3	60	74	38,54	47,68	101	96	65	94	10	6
4	68	70	40,50	49,50	72	59	68	89	8	6
5	74	72	38,80	48,00	79	79	69	65	9	5
6	68	66	39,00	47,60	82	76	70	91	8	4
7	66	70	40,50	40,00	64	66	72	95	9	4
8	78	66	40,70	48,90	70	66	74	94	10	7
9	74	68	39,80	48,20	88	48	79	79	9	4
10	76	80	41,00	48,50	81	50	76	100	2	2
11	74	78	41,20	48,60	66	61	73	80	9	5
12	68	78	40,20	49,60	88	61	74	95	8	7
13	72	82	40,70	47,20	100	95	75	85	7	8
14	70	76	38,70	47,50	80	75	76	81	6	4
15	72	72	39,10	47,80	66	60	74	102	6	8
16	64	68	39,60	48,75	75	75	72	110	6	4
17	58	66	40,40	48,95	68	59	80	80	6	5
18	64	70	40,30	48,68	80	61	69	76	10	6
19	58	72	41,70	49,40	73	64	72	72	9	6
20	64	74	40,26	49,60	83	69	71	71	8	4
No	Количество билирубина		Сатурация пациентов с ХОБЛ		Суммарн симптомов п SGR(Микр обсемен возд секци	обная енность уха в онной	Микротвердость эмали зубов		
-----	-----------------------------	-----------------------------------	----------------------------	---------------------------------------	--------------------------------	-------------------------------------	------------------------------------	-------------------------------	----------------------------	-------------------------------
JN⊡	11	12	13	14	15	16	17	18	19	20
	До введения антибиотиков	После введения антибиотиков	До реабилитации	Через 9 мес. после реабилитации	До стационара	Через б мес. после стационара	До работы	После работы	До депульпи- рования	После депульпи- рования
1	68	110	94	95	37,5	50,9	4	24	4255,0	2449,8
2	83	101	95	95	72,8	31	5	20	4176,0	2560,0
3	70	120	93	96	83,5	48,6	3	12	4097,0	2565,0
4	100	180	95	96	24,7	21,4	4	16	4427,0	2656,2
5	110	100	93	93	38,2	22,3	3	12	4245,0	2553,1
6	100	100	94	94	73,2	20,5	4	16	4300,0	2501,8
7	180	240	90	92	61,3	61,5	6	24	4250,0	2497,8
8	60	120	95	97	52,7	36,9	4	16	4234,0	2440,4
9	200	160	95	91	73,2	63	1	4	4083,0	2497,0
10	210	300	94	95	60,1	51,1	6	6	4215,0	2550,4
11	76	128	98	97	65,7	45,7	9	36	4157,0	2556,3
12	109	175	94	95	45,2	40,4	7	28	4180,0	2512,0
13	180	222	96	96	48,9	38,5	4	16	4420,0	2600,7
14	200	167	95	94	68,6	60,4	2	20	4102,0	2613,9
15	70	115	93	94	73,6	65,4	3	14	4195,0	2541,0
16	150	200	87	88	42,2	36,5	5	20	4100,0	2574,0
17	207	168	92	93	33,3	29	9	18	4210,0	2603,2
18	89	110	92	93	56,9	53,8	2	18	4200,0	2553,7
19	75	130	94	95	67,7	53,5	1	5	4193,0	2551,8
20	100	180	94	93	45	38,7	2	22	4400,0	2449,9

Таблица № 9

		Норма	Норма		Нор	ма	Норма	
NG.	1	2	3	4	5	6	7	8
л <u>∘</u> п.п.	Вес щитовидной железы (г)	Площадь скеннографического изображения (кв. см)	Объем циркулирующей крови (л)	Рост (см)	Амплитуда вызванных потенциалов мозга (мкВ)	Латентный период (мс)	Объем циркулирующей крови (л)	Вес (кг)
1	12	11	4,83	170	2,3	15,7	4,22	52
2	59	32	5,08	175	4,0	20,6	4,69	73
3	62	33	3,81	150	7,4	25,6	5,04	86
4	95	44	5,34	175	4,5	34,6	4,22	54
5	102	46	4,06	155	6,7	48,5	4,80	50
6	23	17	5,34	180	10,0	66,6	4,85	74
7	203	73	4,32	160	9,2	96,1	4,45	61
8	270	89	5,59	185	10,8	127	4,69	69
9	122	52	4,57	165	8,3	73,5	4,92	80
10	41	25	5,80	190	15,2	178	4,57	66
11	54	35	4,90	172	2,5	14,0	4,33	57
12	65	32	5,02	173	3,8	19,0	4,73	75
13	90	45	3,87	153	7,9	27,5	4,77	82
14	110	58	5,33	179	5,2	36,3	4,15	53
15	28	18	4,43	165	6,9	51,5	4,65	52
16	195	78	5,61	183	9,5	63,5	4,90	73
17	255	92	4,72	167	8,8	82,5	4,35	59
18	115	62	5,85	191	10,2	117	4,98	81
19	44	27	4,84	173	9,2	67,5	4,70	68
20	52	33	5,75	188	14,7	169	4,75	56

	Утренняя част суточного биорит	ь Гма		Норма	После инфекцион	родовой іный мастит	Атеросклероз		
N⁰	9	10	11	12	13	14	15	16	
п.п	Контрастная цветовая чувствительность (отн.ед.)	Время суток (ч)	Основной обмен (%)	Амплитуда артериального давления (мм рт.ст.)	Содержание фибриногена (отн.ед.)	День лечения цефалоридином (день)	Площадь поражения артерий таза(%)	Возраст (год)	
1	21,2	6,0	50	70	640	1	22,3	55	
2	17,0	11,5	70	100	662	1	3,10	35	
3	19,4	7,7	20	50	623	2	48,3	74	
4	19,5	9,0	30	60	550	7	17,0	50	
5	15,8	14,0	70	80	562	5	7,50	45	
6	18,1	11,3	10	55	578	5	40,2	65	
7	18,0	10,0	80	100	588	4	23,1	55	
8	20,9	7,2	60	80	544	6	16,0	45	
9	17,5	13,0	10	40	608	3	32,5	61	
10	18,0	8,7	70	90	570	6	29,0	65	
11	19,5	5,8	55	72	620	2	23,8	52	
12	18,5	13,5	65	90	670	3	3,15	31	
13	18,0	8,2	25	65	625	2	46,0	64	
14	21,5	9,8	35	70	540	6	19,0	47	
15	14,8	13,5	65	90	575	4	8,50	43	
16	19,5	12,5	20	60	568	5	34,5	61	
17	19,2	11,0	85	115	570	3	27,0	49	
18	21,5	8,4	55	85	525	4	18,5	42	
19	16,8	12,5	15	45	615	5	34,0	58	
20	17,0	9,2	75	95	580	6	30,5	64	

									1	
	Но	рма	Действие ан (тетрао	тибиотика леана)	Но мал 15 -	орма ьчики 16 лет	Норм мальч 15 - 16	иа ики лет	Норма	
N⁰	17	18	19	20	21	22	23	24	25	26
п.п.	Частота сердцебиений (1/мин)	Амплитуда артериального давления (мм рт.ст.)	Минимальная подавляющая концентрация (мкг/мл)	Длительность лечения (ч)	Рост (см)	Объем легких (л)	Объем легких (л)	Рост (см)	Содержание андростеронов в моче (мг/сут)	Возраст (год)
1	95	60	10,0	1	165	4,93	5,11	162	0,82	82
2	130	100	1,8	7	184	5,35	5,05	169	0,90	82
3	83	58	6,1	4	160	4,45	3,93	152	0,98	75
4	115	89	8,5	2	158	3,92	5,00	168	1,06	65
5	12	90	2,7	5	170	5,28	6,00	183	1,20	55
6	72	40	8,4	1	164	5,00	4,75	174	1,29	45
7	110	80	6,0	3	177	5,10	5,96	187	1,48	25
8	67	32	4,0	4	160	4,30	5,12	164	1,42	25
9	100	70	7,3	2	180	5,35	5,23	172	1,40	35
10	78	41	3,0	6	158	4,52	5,00	175	1,08	65
11	90	55	9,5	2	162	3,70	4,85	165	0,78	80
12	125	105	2,5	6	182	4,90	4,95	167	0,93	79
13	80	60	5,9	3	162	4,35	3,85	157	0,94	75
14	112	91	7,8	2	159	3,70	5,02	170	1,04	68
15	15	88	2,9	4	168	4,95	5,55	184	1,15	58
16	68	45	7,5	1	165	4,82	4,65	172	1,22	47
17	115	82	5,5	3	175	4,65	5,85	183	1,41	27
18	69	35	3,8	3	158	4,20	4,98	166	1,28	23
19	102	66	7,5	2	179	4,40	5,15	173	1,48	33
20	80	45	3,5	6	164	4,54	4,90	175	1,04	63

	Заболевание		Гипе	ртония	Норма 25	мужчины лет	Ho	рма	Н	орма
N⁰	27	28	29	30	31	32	33	34	35	36
п.п.	Гемоглобин в крови (г%)	Гематокрит (эритроциты/ плазма)	Печеночный кровоток (мл/мин)	Артериальное диастолич. давление (мм рт.ст.)	Рост (см)	Масса тела (кг)	Объем циркули- рующей крови (л)	Гематокрит	Основной обмен (%)	Частота сердцебиений (1/мин)
1	11,4	0,42	230	82	158	59	5,25	0,30	132	83
2	11,8	0,36	320	70	161	60	4,20	0,32	98	31
3	12,0	0,39	350	71	166	61	4,34	0,31	121	78
4	10,8	0,33	390	68	170	65	4,15	0,17	125	74
5	8,40	0,26	330	73	174	70	4,41	0,27	71	12
6	10,6	0,30	220	93	178	69	5,63	0,45	92	34
7	10,0	0,32	240	88	166	63	4,77	0,38	114	68
8	8,20	0,26	70	110	174	65	5,55	0,37	87	29
9	9,20	0,32	75	120	170	67	3,56	0,17	69	15
10	11,8	0,37	60	115	192	74	3,68	0,12	103	57
11	11,0	0,38	220	65	163	63	5,10	0,33	125	81
12	12,2	0,42	295	72	166	59	4,45	0,38	100	37
13	11,9	0,35	332	75	171	64	4,28	0,29	114	82
14	10,2	0,39	365	62	172	69	4,20	0,19	105	81
15	8,80	0,29	325	75	168	61	4,44	0,32	78	17
16	10,2	0,35	232	88	175	69	5,52	0,43	90	37
17	9,50	0,38	235	92	180	71	4,35	0,39	103	71
18	8,05	0,29	78	107	173	66	5,48	0,39	89	31
19	8,92	0,32	69	108	168	63	3,52	0,19	72	18
20	10,5	0,40	63	109	189	73	5,02	0,35	99	62

	Ној	рма	Береме	нность	H	орма	Норма	
N⁰	37	38	39	40	41	42	43	44
п.п.	Объем циркулирующей крови (л)	Объем циркулирующей плазмы (мл/кг)	Концентрация пролактина в крови (нг/мл)	Срок беременности (месяц)	Bec (кг)	Возраст (год)	Поверхность тела (кв.м)	Вес (кг)
1	5,68	46,0	25	1	7,5	0,5	1,1	22
2	5,80	49,3	120	5	38	12	1,5	45
3	3,19	27,4	75	4	10	1,0	1,2	27
4	3,83	27,2	50	2	47	15	1,3	33
5	5,53	37,0	185	9	14	3,0	1,9	78
6	4,22	33,6	125	6	65	25	1,3	38
7	4,56	35,0	70	3	24	7,0	2,0	88
8	5,32	36,2	145	7	25	5,0	1,7	60
9	5,95	39,9	170	8	53	18	1,5	52
10	6,13	44,8	80	4	28	9,0	1,7	68
11	5,54	47,2	21	2	9,5	0,7	1,2	23
12	5,70	48,2	105	4	34	13	1,4	41
13	3,88	26,0	89	5	12	2,5	1,3	25
14	3,92	29,4	78	4	43	14	1,8	74
15	5,28	35,5	172	8	18	3,2	1,8	69
16	4,08	31,6	115	5	61	28	1,4	37
17	4,48	36,3	82	3	22	6,7	1,9	85
18	5,18	37,5	132	6	27	4,9	1,8	58
19	5,84	41,2	154	7	51	19	1,4	49
20	6,05	45,0	95	4	29	8,8	1,6	61

	Норма		Ho	рма	Степ тест ф	ризической	Профессиональные		
	порма		(тренировани	ные лыжники)	работоспо	особности	заболе	вания	
N⁰	45	46	47	48	49	50	51	52	
п.п.	Максимальное артериальное	Возраст	Максимум потребления	Место занятое в	Частота сердечных	Максимум потребления	Содержание толуола в	Содержание	
	давление	(год)	кислорода	соревнованиях	сокращений	кислорода	воздухе цеха	толуола в	
	(мм рт.ст.)		(мм/кг мин)	-	(1/мин)	(л/мин)	(мг/куб.м)	крови (м17л)	
1	88	7	81,1	1	126	5,0	200	0,5	
2	96	11	81,3	2	150	4,2	95	0,6	
3	113	17	80,3	3	155	3,8	155	0,7	
4	90	8	79,1	4	132	4,8	100	0,7	
5	109	15	78,8	5	143	4,2	220	0,5	
6	103	12	79,6	6	156	4,1	300	0,7	
7	90	9	79,3	7	138	4,5	290	0,6	
8	105	13	79,1	8	162	3,9	375	0,5	
9	108	14	77,2	9	125	4,7	380	0,8	
10	93	10	77,5	10	144	4,2	390	0,1	
11	82	6	79,7	2	122	4,9	185	0,5	
12	61	9	82,0	4	145	4,3	105	0,6	
13	102	16	79,3	3	160	3,9	175	0,5	
14	93	9	77,0	3	138	4,6	90	0,6	
15	101	14	72,0	5	146	4,3	205	0,4	
16	105	16	77,5	6	159	4,1	280	0,7	
17	93	11	78,8	8	146	4,6	355	0,5	
18	99	15	80,1	7	164	3,8	340	0,9	
19	112	17	78,4	9	135	4,6	400	0,2	
20	99	13	78,5	10	133	4,1	320	0,6	

Норма			I	Норма	Норма		Атеросклероз		
No	53	54	55	56	57	58	59	60	
п.п.	Поверхность тела (кв.м)	Рост (см)	Возраст (лет)	Поверхность тела (кв.м)	Активность изофермента МВ креатинфосфокиназы (%)	Концентрация мочевины (г/л)	Площадь поражения подвздошной артерии (%)	Возраст (лет)	
1	1,3	135	1,2	0,79	38	3	14	75	
2	1,3	165	6,0	0,92	100	0	3	45	
3	1,4	135	4,5	0,49	95	1	8	65	
4	1,3	190	10,5	0,90	30	5	24	75	
5	1,5	172	12,0	1,20	32	4	10	55	
6	1,6	188	3,0	0,41	71	2	25	90	
7	1,1	154	8,0	0,82	13	5	10	85	
8	1,1	138	25,0	1,70	82	1	5	50	
9	1,4	130	7,0	0,81	54	3	13	70	
10	1,6	208	12,0	1,61	62	1	19	85	
11	1,2	125	1,4	0,75	45	3	12	71	
12	1,2	165	5,2	0,88	90	1	4	40	
13	1,3	175	4,7	0,51	85	2	7	62	
14	1,4	150	9,8	0,92	36	4	21	70	
15	1,5	178	11,0	1,25	40	5	12	49	
16	1,6	182	4,0	0,66	64	3	28	95	
17	1,2	162	7,5	0,85	15	4	9	77	
18	1,1	140	22,5	1,80	77	2	7	45	
19	1,5	200	6,5	0,93	50	3	15	68	
20	1,7	195	10,5	1,41	65	2	15	75	

Таблица	№	10
	• • -	

	Параметры		Содержание йода-131 в щитовидной железе (%) через			Содержание йода-131 во всем теле (%) через		Содерж периф крог	ание йода ерич. ткан ви (%) чер	-131 в іях и рез	Содерж. йода-131 в ОЦК	Содержание	
	Диагностируемые состояния		4ч	24 ч	48 ч	24 ч	48 ч	4ч	24 ч	48 ч	(%) через 48 ч	ьси-131 (%) через 48 ч	
j	dj	Pji, σji	P 1	P 2	P 3	P 4	P 5	P 6	P 7	P 8	P 9	P10	
0	Honya	Роі(сред)	13,5	24,2	24,0	35,1	29,8	84,4	11,8	6,4	0,28	0,07	
U	порма	σ _{oi}	2,1	4,1	2,2	6,4	5,3	2,5	5,9	2,6	0,14	0,034	
1	Эндемический	Р1і(сред)	23,0	38,4	40,2	47,9	44,7	77,2	9,0	4,6	0,31	0,09	
	эутиреоидный зоб	σ _{1i}	4,5	5,6	8,5	11,0	11,0	6,4	2,7	2,3	0,17	0,08	
2	Тиреотоксикоз	Р2і(сред	41,1	48.9	42,9	58,6	52,5	60,0	10,9	11,2	0,12	0,13	
4	(легк. форма)	σ 2i	11,1	9,6	10,2	9,2	13,4	14,2	4,8	3,8	0,15	0,056	
3	Тиреотоскикоз	Рзі(сред)	47,2	60,0	57,0	76,0	71,9	52,3	14,9	13,8	1,24	0,38	
5	(сред. форма)	σ3i	16,1	14,4	14,4	11,2	12,2	14,2	7,4	7,0	1,3	0,6	
4	Тиреотоксикоз	Р4і(сред)	55,5	66,5	54,9	86,2	82,3	44,7	22,9	27,7	2,32	0,83	
4	(тяж. форма)	σ4i	10,9	7,7	8,1	4,5	6,9	17,9	9,4	8,3	0,86	0,38	

Параметры	Содержание йода-131 в щитовидной железе (%) через			Содержание йода- 131 во всем теле (%) через		Содер перифе кр	жание йод рических т ови (%) че	а-131 в гканях и срез	Содержание йода-131 в	Содержание БСИ-131	
№ истории болезни	4ч	24 ч	48 ч	24 ч	48 ч	4ч	24 ч	48 ч	ОЦК (%) через 48 ч	оси-131 (%)через 48 ч	
	P 1	P 2	P 3	P 4	P 5	P6	P 7	P 8	P 9	P10	
1	17,1	36,6	44,9	47,3	44,8	87,6	10,8	10,3	0,5	0,17	
2	47,1	47,2	45,0	79,0	77,0	49,5	32,6	31,0	3,9	0,28	
3	50,4	56,0	52,7	80,5	79,2	54,4	22,6	19,0	0,6	0,15	
4	27,9	45,3	40,5	45,5	41,1	79,3	12,0	13,6	0,55	0,07	
5	51,5	56,9	62,6	71,4	60,0	69,4	14,1	17,5	2,2	0,77	
6	64,6	66,6	68,2	83,9	81,3	35,8	15,0	8,8	1,1	0,38	
7	19,4	43,5	43,0	60,0	54,5	80,3	16,0	10,7	0,69	0,09	
8	49,0	52,5	44,1	85,0	74,4	45,7	21,7	14,5	0,69	0,26	
9	64,5	70,4	61,3	73,4	71,6	66,2	17,9	14,6	1,64	0,63	
10	20,1	40,4	38,0	57,0	54,9	82,3	18,0	17,9	0,59	0,12	
11	36,5	53,3	46,7	45,1	42,1	76,6	6,86	4,87	0,56	0,71	
12	56,1	63,6	64,5	80,9	78,5	40,7	16,2	9,1	0,58	0,25	
13	40,1	63,8	38,7	45,4	46,0	85,1	7,67	8,06	0,22	1,0	
14	37,9	55,9	51,9	64,1	63,3	69,0	12,8	18,8	0,31	0,08	
15	37,1	48,6	56,9	31,7	61,3	83,6	8,79	3,44	0,29	0,21	

NG	Гемо	глобин	Лейк	оциты	Тром	боциты	ы Общий белок		Билирубин	
JN≌	до	после	до	после	до	после	до	после	Д0	после
1	88	115	16,5	6,5	467	269	45	58	8,9	4,9
2	102	120	13,2	8	370	500	58	74	13,5	6,3
3	110	97	12,7	10	560	386	60	61	4,8	9,9
4	94	111	9,8	4,1	306	168	52	65	14,7	6,7
5	93	101	15	7,1	367	400	66	70	3,9	7,7
6	115	101	30,7	16,5	652	524	61	60	10	10
7	99	112	26,3	15,4	625	702	56	74	9	6,5
8	85	97	8,8	17	347	522	58	72	16,6	5,9
9	91,1	94	14,9	13,3	102	453	58	66	18,8	4,8
10	101	73	14,8	10,5	356	323	56,8	60	11,7	6
11	103	90	22,2	11	911	1195	56	74	5	4,8
12	96	102	18,6	10,1	270	570	54	67	8,4	4,9
13	119	99	12,8	6,8	588	322	58	69	6,2	5,5
14	112	109	11,7	7,8	305	451	58	62	5,7	4,6
15	149	148	12,3	8,1	548	481	71	85	10	7,8
16	110	100	10	7,3	400	336	62	64	6,8	4
17	100	69	18,7	7,1	358	395	71	53	8	5,4
18	95	102	14,1	7,2	243	369	72	68	5,2	5,3
19	76	89	17,2	5	260	661	48	60	7,9	5,2
20	111	84	15,6	8,7	459	283	71	68	24	12
21	98	10,2	10,7	8,6	329	336	68	60	14	10
22	95	104	16,4	7,6	256	272	60	66	14,7	6
23	74	93	21,1	7,7	541	432	64	60	10,6	8,8
24	83	119	14,2	7,2	281	350	49	72	10	7
25	127	134	10,8	7,8	240	324	67	79	7,2	5,2
26	139	136	11,3	7,7	274	162	77	83	7,4	7
27	91	100	12	7,7	304	276	56	68	6,5	4
28	110	108	15,8	10,8	491	391	70	64	4,9	7,2
29	85	104	12,3	9	391	439	58	65	5,2	6,3
30	97	102	13,6	7,5	497	469	52	64	9	5,5
31	88	114	10,6	16,1	498	202	52	45	5,6	5
32	89	110	15,6	10,1	575	560	69	76	6,4	6,5
33	100	110	11,8	7,6	450	413	73	80	7,8	6
34	97	92	10,9	14,5	357	508	67	60	4	6,9
35	98	102	10,7	6,7	245	326	68	70	4,8	4,7
36	124	110	9,7	5,7	144	238	76	72	18,7	5,5
37	109	105	7,1	6,9	297	152	69	75	15,7	6,4
38	94	100	11	6,5	227	175	62	71	7,2	5
39	106	100	8,5	18,5	261	298	60	54	5,4	5,6
40	87	110	7,4	6,5	235	312	65	54	16,7	5,4
41	98	108	16	17	476	594	65	62	7	7,7
42	97	104	13	7,1	250	277	43,5	80	9,8	6,3
43	107	108	9,6	9,0	205	365	62	78	8	7
44	99	85	6	7,9	221	321	49	68	6	7,3
45	120	121	20,3	15,4	384	408	62	64	5,7	6

Таблица №12. Анализы крови пациентов до и после лечения.

АЛТ ACT Калий Мочевина Глюкоза № после после Д0 после Д0 Д0 д0 после после Д0 1 4,3 4 10,1 44,7 2,36 1,81 12,5 15 33,1 4,7 2 4,2 4,8 68 21,3 88,9 40,1 4,08 4,23 3,7 2,8 3 6,5 5 45.6 38,5 62,2 40,1 5,1 4,05 9,3 4.8 4 5 24,8 73,4 4,28 4,2 8.3 6,3 4,1 84,4 81 4,3 5 5,2 48,2 30,3 42,9 17,6 4,4 3,89 6,3 2,2 6 4,4 19,5 5,9 22,2 7,7 5,2 4,21 11,4 9,8 6 7 6,5 4,9 46,4 32 38,9 40 3,6 3,7 5,5 2,5 5,4 8,7 24 8,7 35 4,76 7,2 8 4,1 3,4 6 9 4,5 53,4 19,4 41 32,4 4,08 3,44 2,5 3,8 3,8 10 6,6 4,1 12,6 16 31 34 4,21 3,49 10,1 16,6 11 4,3 4,2 32,5 32,3 105 66,8 5,3 3,92 18 3,4 3,6 4.2 12 6.4 28.1 19 34 21 5.83 2,81 13 5 3,7 47 5,17 3,1 2,9 13 26,8 18 16 3,27 3,8 4,1 38 29 3,51 14 42 32 4,44 8 2,6 15 5,6 5 24 18 38 24 5,44 3,88 4,7 7,2 12 6,3 28 24 32,4 29 4,5 1,3 16 4,38 4,2 17 5,1 4,5 28 22 21 19 3,61 7,8 3 5,6 18 8,4 4 31 24 27,6 21,5 3,5 3,88 4,5 3,2 19 5,5 8,2 24 19,4 19 10 3,46 3,33 4,8 2,6 4,6 24 19 40 2,88 4,5 8,8 20 5,6 **46** 4 21 4,5 5,2 31,1 25,7 24,7 18 4,8 2,6 2,7 2,4 5,3 5,2 2,2 22 24 23,7 19 5,14 3,5 5,2 18 4,7 22,5 17,8 3.86 3.1 23 4,1 16 26 8,8 4,8 3,9 24 4,6 19 14 23 18 5,02 3,74 4,9 3,5 25 5,2 4.9 21,4 16.4 34 21 4.39 3,86 3,2 2,7 26 9,9 6,4 31 24,2 32 19 4,07 3,77 4 3,4 5,3 21 2,93 5,8 27 4,7 28 19 26 4,34 3,6 28 3,9 4,1 19 24 24 26 4,61 2,58 2,8 5,4 29 5,8 5,1 28 24 26 19 4,03 2,5 2 3,4 34 28 26 4,8 3,3 5,9 30 4,2 4 18 4 31 4,6 4 59,5 10 45,8 14 3,91 3,32 3 6,2 32 4,3 4,2 40 24 43,3 4,79 3,1 3 18 3,87 33 4,9 4,3 42 19 54 28 4,7 3,22 3,4 4,1 4,7 4,2 38 44 26 39 3,78 4,26 3,8 6,5 34 4,7 24 27 35 5 28 31 4,4 3,21 3.6 2,81 36 5 5,2 34 21,3 31 27,2 3,89 4,4 5,4 3 37 5,4 4 29 22,4 28 19,4 3,66 3.8 6 4,4 4,2 3,5 20.2 23,6 23 22,6 3,7 9,2 4,2 38 3,4 39 5 5,5 20,2 24,4 27 30 3,7 3,53 1,5 3,7 40 5 25,2 19 27 21,4 4,2 4,7 4,3 6,8 4,2 41 5,8 5,3 27,4 24 34 27,5 4,7 4,43 5,2 3,8 42 4,5 7 59,2 23,4 46,5 32 4,7 4,1 7,8 5,5 12 5,8 28 21,4 13,5 5,18 5 43 19,8 4,3 3,6 44 5,6 9,2 37,2 25,5 34,8 39 3,61 3,1 13,9 6,5 45 4,7 5,1 35,2 23,4 28,4 5.0 2,7 32,6 4,16 3,8

Примерные тестовые вопросы по курсу «Медицинская информатика»

Медицинская кибернетика - это наука

-об управлении организмом больного и системами здравоохранения на -основе обработки информации

-об управлении организмом больного и системами здравоохранения без

обработки информации

-о методах переработки медицинской информации

-о методах и средствах переработки медицинской информации

-о средствах переработки медицинской информации

Медицинская информатика - это наука

-об управлении организмом больного и системами здравоохранения на основе обработки информации

-об управлении организмом больного и системами здравоохранения без

обработки информации

-о методах переработки медицинской информации

-о методах и средствах переработки медицинской информации

-о средствах переработки медицинской информации

Среднее квадратичное отклонение

-показывает величину разброса параметра около его среднего значения

-показывает максимальное значение параметра

-пропорционально сумме разностей между средним и текущими значениями параметра

-пропорционально сумме квадратов разностей между средним и текущими значениями параметра

-пропорционально корню квадратному из суммы квадратов разностей между средним и текущими значениями параметра

Система управления включает -объект управления -устройство измерения возмущения -устройство управления -программу управления объектом -обратную связь для управления объектом

Особенности иерархии систем управления в организме --имеется прямая связь с нижележащим и вышележащим уровнями иерархии -имеется обратная связь с нижележащим и вышележащим уровнями иерархии -возмущения возникают на своем уровне иерархии -возмущения действуют с нижележащего уровня иерархии -возмущения действуют с вышележащего уровня иерархии

Вектор состояния - это

-любой вектор в пространстве состояний

-вектор, проведенный из начала координат пространства состояний в точку

соответствующую состоянию пациента

-вектор между двумя точками в пространстве состояний, соответствующим двум состояниям пациента

-вектор между точкой идеальной нормы в пространстве состояний и точкой,

соответствующей состоянию пациента

-набор функциональных параметров пациента

Формализованный список заболеваний - это -список заболеваний в данном отделении -список заболеваний в данном отделении, включающий вероятности встречи каждого заболевания -список заболеваний в данном отделении, включающий средние значения параметров при каждом заболевании -список заболеваний в данном отделении, включающий формулы,

описывающие течение каждого заболевания

-список заболеваний в данном отделении, включающий средние значения параметров и среднеквадратичные отклонения при каждом заболевании

Вероятность встречи симптома при данном заболевании есть частное от деления

-общего числа больных, прошедших через отделение к числу больных, прошедших через отделение с данным заболеванием

-числа больных, прошедших через отделение с данным заболеванием к общему числу больных, прошедших через отделение

-числа больных, прошедших через отделение с данным заболеванием к числу больных, прошедших через отделение, имеющих данный симптом при данном заболевании

-числа больных, прошедших через отделение, имеющих данный симптом при данном заболевании к числу больных, прошедших через отделение с данным заболеванием

-числа больных, прошедших через отделение, имеющих данный симптом при данном заболевании к общему числу больных, прошедших через отделение

Локальная компьютерная сеть включает

-сервер

-клиентские компьютеры

-модемы

-линии связи

-сетевые карты

123

Валерий Алексеевич Телешев Анастасия Викторовна Андреева Вадим Яковлевич Крохалев Сергей Юрьевич Соколов Алексей Васильевич Резайкин

МЕДИЦИНСКАЯ ИНФОРМАТИКА

Учебно-методическое пособие к практическим занятиям по медицинской информатике

Рекомендовано к изданию ЦМС ГБОУ ВПО УГМУ Министерства здравоохранения России протокол № 3 от 25.02 2015 г.

 Подписано в печать
 2015 г.
 Формат 60х80 1/16.

 Тираж 200
 Заказ №

Адрес: г. Екатеринбург, Репина 3, УГМУ