Государственное бюджетное образовательное учреждение высшего профессионального образования "Уральская государственная медицинская академия" Министерства здравоохранения Российской Федерации

Кафедра микробиологии, вирусологии и иммунологии

Литусов Н.В., Устюжанин А.В.

СТРУКТУРА И РЕПРОДУКЦИЯ ВИРУСОВ

Иллюстрированное учебное пособие

Екатеринбург 2012 Рецензент: заведующий кафедрой инфекционных болезней ГБОУ ВПО "Уральская государственная медицинская академия" Минздрава России д.м.н. профессор Борзунов В.М.

Литусов Н.В., Устюжанин А.В. Структура и репродукция вирусов. Иллюстрированное учебное пособие. – Екатеринбург: Изд-во УГМА, 2012. - 29 с.

В учебном пособии приводятся данные о форме, размерах вирусов, их строении, химическом составе и репродукции. Представленные материалы иллюстрированы рисунками и схемами. Пособие содержит вопросы для самоконтроля усвоения учебного материала, а также вопросы тестового контроля.

Учебное пособие предназначено для внеаудиторной подготовки студентов лечебно-профилактического, педиатрического, медико-профилактического, фармацевтического и стоматологического факультетов высших медицинских учебных заведений.

[©] Литусов Н.В., Устюжанин А.В.

Содержание

Форма и размеры вирусов	4
Структура вирусов	
Типы симметрии вирусов	
Вирусный геном	
Вирусные белки	
Липиды и полисахариды вирусов	
Жизненный цикл вирусов	
Вопросы для самоконтроля усвоения материала	
Тестовый контроль	
Список литературы	
$\Gamma = \Gamma = J\Gamma$	

Форма и размеры вирусов

Вирусы - это мельчайшие формы жизни, не имеющие клеточного строения. Вирусы образуют отдельное царство (Vira). От других микробов вирусы отличаются присущими только им уникальными свойствами.

- 1. Ультрамикроскопические размеры вирусов. Вирусы измеряются в нанометрах (1 мм = 1000 мкм, 1 мкм = 1000 нм). По размерам вирусы подразделяются на мелкие (например, вирус полиомиелита) размер вирусных частиц 10-25 нм, средние (например, вирусы гриппа) размер вирионов составляет 100-120 нм, крупные (например, вирус натуральной оспы) размер вирусных частиц около 350 нм.
- 2. **Наличие только одного типа нуклеиновой кислоты** ДНК или РНК. По этому признаку все вирусы разделены на два класса ДНК-содержащие вирусы и РНК-содержащие вирусы.
- 3. **Облигатный внутриклеточный паразитизм.** Вирусы способны реплицироваться (размножаться) только внутри живых клеток, так как у них отсутствуют собственные системы, синтезирующие белок и генерирующие энергию.
- 4. **Простое строение вириона** (вирусной частицы). Вирион состоит из генома (ДНК или РНК), покрытого одной или двумя оболочками (капсидом и суперкапсидом). У вирусов отсутствуют такие клеточные элементы как цитоплазма, клеточные мембраны, рибосомы и др.
- 5. **Дизъюнктивной (разобщенной) способ репродукции** внутри клетки. При репродукции вирусов в разных частях инфицированной клетки синтезируются нуклеиновые кислоты и белки, которые затем объединяются в дочерние вирусные частицы. Синтез компонентов вирусных частиц происходит либо в цитоплазме, либо в цитоплазме и ядре клетки.

Морфологию и структуру вирусов изучают в основном с помощью электронной микроскопии. Препараты для электронной микроскопии готовят специальными методами:

- **методом напыления** (на подложку из чистого углерода или коллодия наносят вируссодержащий материал, лиофильно высушивают и напыляют тяжелые металлы в частности, палладий);
- **методом реплик** (вируссодержащий материал заливают тонким слоем пластмассы и микроскопируют);
- **методом негативного контрастирования** (вируссодержащий материал помещают на подложку, добавляют раствор уранилацетата, который попадает во все углубления вириона и создает для электронов непроницаемый фон).

Размеры вирионов определяют с помощью ультрафильтрации через фильтры с известным диаметром пор в нм или методом ультрацентрифугирования. Крупные вирионы можно увидеть в световом микроскопе в виде мелких внутриклеточных образований - включений (например, тельца Пашена при оспе, тельца Бабеша-Негри при бешенстве).

Вирусная частица называется вирионом. Выделяют следующие формы вирионов:

- палочковидная форма (рисунок 1) характерна для вируса табачной

мозаики;

- пулевидная форма (рисунок 2) присуща вирусу бешенства;
- **сферическая форма** (рисунок 3) отмечается у многих вирусов, в частности у герпесвирусов, вируса иммунодефицита человека;
 - нитевидная форма (рисунок 4) наблюдается у филовирусов;
 - овальная форма (рисунок 5) характерна для вируса натуральной оспы;
- сперматозоидная форма (рисунок 6) отмечается у большинства вирусов бактерий (бактериофагов).

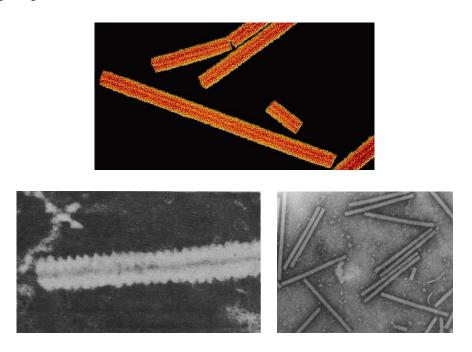


Рисунок 1 - Палочковидная форма вирионов. Электронная микроскопия. Компьютерная окраска.

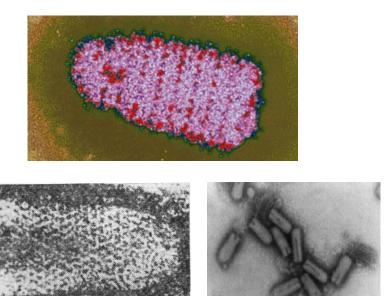
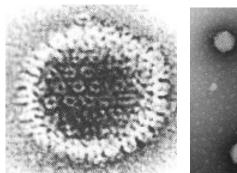



Рисунок 2 - Пулевидная форма вирионов. Электронная микроскопия. Компьютерная окраска.

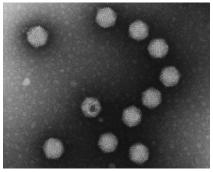
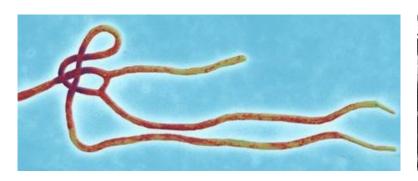



Рисунок 3 - Сферическая форма вирионов. Электронная микроскопия.

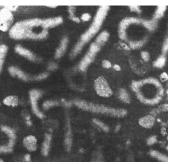
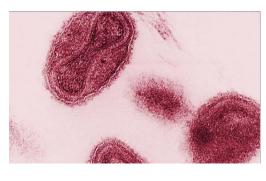
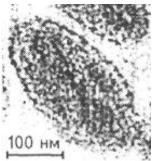




Рисунок 4 - Нитевидная форма вирионов. Электронная микроскопия. Компьютерная окраска.

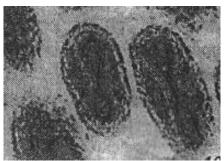


Рисунок 5 - Овальная форма вириона вируса натуральной оспы. Электронная микроскопия. Компьютерная окраска.

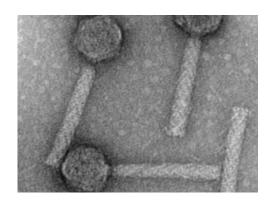


Рисунок 6 - Сперматозоидная форма вирионов. Электронная микроскопия бактериофагов.

Структура вирусов

По своей структуре вирусы представляют собой геометрически правильные образования, состоящие из центральной части (генома) и одной или двух оболочек. В зависимости от количества оболочек вирусы подразделяются на 2 типа:

- **простые вирусы** (просто устроенные, безоболочечные, "голые"), состоящие из нуклеиновой кислоты и одной белковой оболочки капсида;
- **сложные вирусы** (сложно устроенные, оболочечные, "одетые"), содержащие кроме нуклеиновой кислоты и капсида внешнюю липопротеиновую оболочку (суперкапсид).

Сравнительное схематическое изображение простого и сложного вирусов представлено на рисунках 7 и 8.

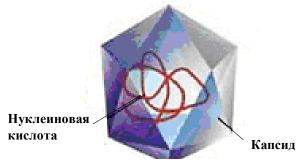


Рисунок 7 - Схематическое изображение простого (безоболочечного) вируса.

Рисунок 8 - Схематическое изображение сложного (оболочечного) вируса.

В центре вириона располагается **нуклеиновая кислота (вирусный геном)**. Снаружи нуклеиновая кислота покрыта белковой оболочкой - **капсидом** (лат. *сарѕа* – футляр, коробка). Капсид как чехлом окружает вирусную нуклеиновую кислоту. Вирусный геном и капсид вместе образуют **нуклеокапсид**. Капсид состоит из повторяющихся морфологических субъединиц - **капсомеров**. Простые вирусы могут быть как РНК-содержащими, так и ДНК-содержащими (рисунок 9).

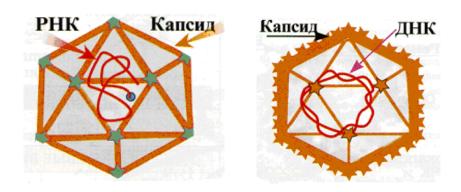
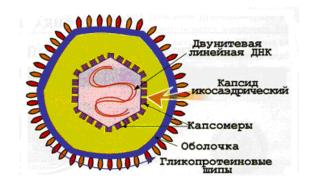



Рисунок 9 - Просто устроенные (безоболочечные) РНК-содержащий и ДНК-содержащий вирусы.

Каждый капсомер построен из одной или нескольких гомологичных или гетерологичных полипептидных цепей, которые соединены друг с другом дисульфидной связью. Таким образом, каждый капсомер может быть мономерным (содержать полипептид) полимерным (включать один либо несколько полипептидов). Например, табачной y вируса мозаики 2130 одинаковых капсомеров.

У сложных вирусов наряду с капсидом имеется дополнительная оболочка - суперкапсид (пеплос, покрывало). Суперкапсид состоит из двойного слоя липидов и специфических вирусных белков. Суперкапсидная оболочка вируса является модифицированной цитоплазматической мембраной клетки, в которой репродуцировался данный вирус. Модификация происходит путем встраивания вирусных белков в участки цитоплазматической мембраны инфицированной клетки. При репродукции одного и того же вируса в разных клетках суперкапсиды дочерних вирионов по химическому составу будут различаться. Сложные вирусы также могут быть как РНК-содержащими, так и ДНК-содержащими (рисунок 10).

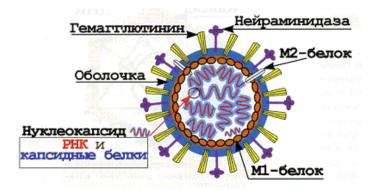


Рисунок 10 - Сложно устроенные (оболочечные) ДНК-содержащий вирус герпеса и РНК-содержащий вирус гриппа.

На поверхности некоторых оболочечных вирусов располагаются **шипы** или шипики (пепломеры, суперкапсидные белки) - это липопротеиновые или гликопротеиновые выступы. Например, у вируса гриппа имеется два типа шипов: гемагглютинин и нейраминидаза. Шипы выполняют функцию взаимодействия вирусных частиц с чувствительными клетками. Если удалить шипы детергентом, то вирус полностью теряет инфекционную активность. В электронном микроскопе шипы выглядят в виде отростков разной формы (рисунок 11).

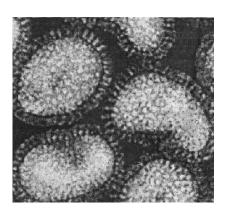


Рисунок 11 - Электронная микрофотография вируса гриппа типа А.

Суперкапсид и капсид выполняют функции защиты генома от воздействия повреждающих факторов внешней среды, обусловливают взаимодействие вирусов с восприимчивой клеткой и проникновение вирусного генома в ее цитоплазму, а также определяют антигенные, иммуногенные и многие другие свойства (гемагглютинацию, гемадсорбцию, слияние клеток и др.).

У некоторых сложных вирусов между суперкапсидом и капсидом расположен слой белка, который называется **матриксом** (мембранный, матриксный белок, Мбелок, внутренняя белковая мембрана). Этот белок способствует взаимодействию суперкапсида с нуклеокапсидом (рисунок 12).

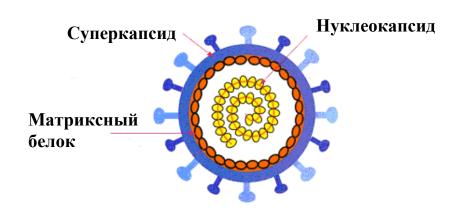


Рисунок 12 - Матриксный белок вирусов.

Нуклеокапсид у оболочечных вирусов часто обозначают термином "**сердце-вина**" (cor).

Типы симметрии вирусов

Капсомеры капсида состоят из одной или нескольких молекул белка, соединяются друг с другом и уложены вокруг нуклеиновой кислоты в определенном порядке, образуя симметричные структуры. Способ укладки капсомеров и форма образующихся структур определяет **тип симметрии** вириона. Разные способы укладки капсомеров вокруг нуклеиновой кислоты обеспечивают образование энергетически экономичных структур. Различают три типа симметрии вирионов: спиральный, кубический и смешанный.

І группа - вирусы, имеющие **спиральный тип симметрии**. Этот тип симметрии характерен для вирусов, у которых капсомеры соединяются с геномом и образуют спиралевидную или винтообразную структуру (например, у вируса табачной мозаики). Капсомеры таких вирусов уложены в спирали одинакового диаметра. Витки спирали тесно прилегают друг к другу, образуя трубочку. Спиральный тип симметрии характерен для палочковидной, пулевидной или нитевидной форм вирусов (рисунок 13).

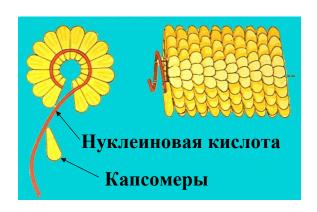


Рисунок 13 - Модель вируса со спиральным типом симметрии.

II группа - вирусы, имеющие **кубический тип симметрии**. При кубическом типе симметрии капсомеры уложены вокруг нуклеиновой кислоты в виде правильного многогранника: додекаэдра (12 граней) и икосаэдра (20 граней) (рисунок 14).

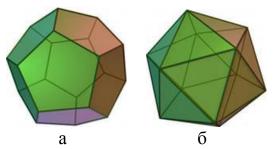


Рисунок 14 - Правильные многогранники: додекаэдр (а) и икосаэдр (б).

Вирусы, имеющие кубический тип симметрии, принимают сферическую форму (рисунок 15).

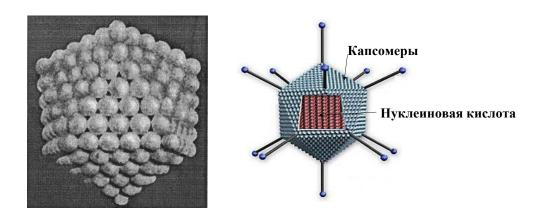


Рисунок 15 - Модель вируса с кубическим типом симметрии.

Такой тип симметрии имеют вирусы герпеса, полиомиелита и многие другие. **III группа** - вирусы, имеющие **комбинированный (смешанный, сложный) тип симметрии**. Такой тип симметрии характерен для бактериальных вирусов (бактериофагов), имеющих вид сперматозоида. При этом головка бактериофага имеет форму многогранника с кубическим типом симметрии, а хвостовой отросток – цилиндрическую форму со спиральным типом симметрии (рисунок 16).

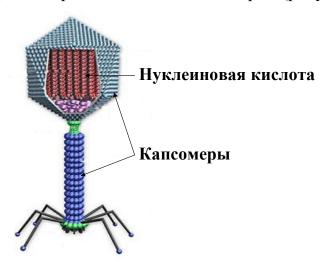


Рисунок 16 - Модель бактериофага со смешанным типом симметрии.

Тип симметрии определяется только нуклеокапсидом, суперкапсид при этом не учитывается. Например, вирус гриппа снаружи выглядит как сферическая структура, хотя нуклеокапсид состоит из 8 фрагментов, каждый из которых имеет спиральный тип симметрии (рисунки 17).

Рисунок 17 - Схематическое изображение вириона вируса гриппа с фрагментированным геномом.

Подобное строение можно наблюдать у других вирусов (рисунки 18 и 19).

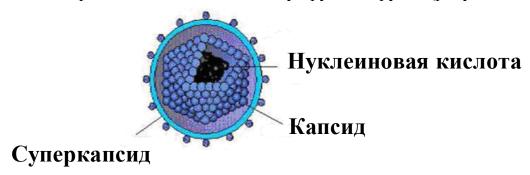


Рисунок 18 - Схема строения оболочечного вириона с икосаэдрическим нуклеокапсидом.

Рисунок 19 - Схема строения оболочечного вириона со спиральным нуклеокапсидом.

Таким образом, тип симметрии определяет форму простого вируса или форму нуклеокапсида сложного вируса, но не влияет на форму оболочечного вируса.

Вирусный геном

В отличие от бактерий вирусы содержат только один тип нуклеиновой

кислоты (ДНК или РНК). Вирусные нуклеиновые кислоты выполняют функцию вирусного генома. Нуклеиновые кислоты вирусов, составляющие вирусный геном, имеют в своем составе те же компоненты, что и геномы других организмов:

- пуриновые основания (аденин и гуанин);
- пиримидиновые основания (цитозин и тимин в ДНК или цитозин и урацил в РНК);
 - углеводы (рибоза в РНК или дезоксирибоза в ДНК);
 - остатки фосфорной кислоты.

Вирусый геном может быть представлен либо РНК (РНК-содержащие вирусы), либо ДНК (ДНК-содержащие вирусы). При этом нуклеиновая кислота может быть однонитевой или двунитевой. У некоторых РНК-содержащих вирусов (например, у вируса гриппа) геном может содержать фрагментированную нуклеиновую кислоту (фрагментированный геном). Вирусы, содержащие фрагментированную молекулу нуклеиновой кислоты, называются полигеномными вирусами. У полигеномных вирусов каждый фрагмент заключен в свою капсидную оболочку. Нуклеиновые кислоты могут быть линейными или кольцевыми. Содержание нуклеиновой кислоты в вирионе разных вирусов составляет от 1 до 32% массы вириона.

Геном вирусов содержит от 3 до 100 и более генов, которые подразделяются на структурные и регуляторные. Структурные гены кодируют синтез белков, входящих в состав вириона, регуляторные гены изменяют метаболизм инфицированной клетки и регулируют скорость репродукции вирусов.

Таким образом, вирусные геномы по количеству цепей бывают однонитевыми (односпиральными, одноцепочечными) и двунитевыми (двуспиральными, двуцепочечными), по форме - линейными и кольцевыми (циркулярными), по протяженности - непрерывными и фрагментированными.

Геном ДНК-содержащих вирусов может быть представлен следующими типами (рисунок 20).

- 1. Однонитевая линейная ДНК. Примером таких вирусов являются парвовирусы.
- 2. Двунитевая линейная ДНК. Такой тип вирусного генома выявлен у вирусов герпеса и других вирусов.
- 3. **Двунитевая кольцевая ДНК**. Такой тип генома характерен для папилломавирусов.
- 4. Двунитевая кольцевая ДНК с дефектом одной цепи. Такой геном характерен для некоторых вирусов. В частности, у вируса гепатита В двунитевая кольцевая молекула ДНК имеет дефект одной цепи, то есть одна цепь короче другой.

- Однонитевая линейная ДНК (парвовирусы)
- Двунитевая линейная ДНК (вирус герпеса)

 Двунитевая кольцевая ДНК (папилломавирус)

• Двунитевая кольцевая ДНК с дефектом одной цепи (гепатит В)

Рисунок 20 - Схематическое изображение генома ДНК-содержащих вирусов.

Молекулярная масса ДНК вирусов позвоночных варьирует в широких пределах: от 0,7-1,5 МД у цирковирусов и парвовирусов до 150-375 МД у вирусов оспы.

Геном РНК-содержащих вирусов, патогенных для человека, может быть представлен следующими типами (рисунок 21):

- 1. Одноцепочечная нефрагментированная РНК, обладающая матричной активностью (позитивная, или +РНК), то есть способная выступать в качестве иРНК. Примерами таких вирусов являются пикорнавирусы.
- 2. Одноцепочечная нефрагментированная РНК, не обладающая матричной активностью (негативная, или -РНК). Минус-РНК не способна выполнять функцию иРНК. В связи с этим вирион имеет в своем составе фермент РНК-зависимую РНК-полимеразу, называемую транскриптазой. Этот фермент на основе вирусной РНК синтезирует матричную РНК, необходимую для трансляции вирусспецифических белков. Примерами таких вирусов являются парамиксовирусы и рабдовирусы.
- 3. Одноцепочечная фрагментированная РНК, не обладающая матричной активностью (негативная, минус-РНК). Такой вирион несет в своем составе транскриптазу. К этим вирусам относятся ортомиксовирусы (РНК вириона состоит из 8 фрагментов).
- 4. **Двухцепочечная фрагментированная РНК**; вирион имеет транскриптазу. К этому типу относятся реовирусы (10 фрагментов).
- 5. Вирусы, геном которых представлен двумя идентичными нитями позитивной РНК (диплоидный геном). Вирионы имеют фермент обратную транскриптазу. Эта группа включает ретровирусы.
- 6. **Одноцепочечная кольцевая РНК**. Такой геном имеет только один вирус, вирус дельта-гепатита. Это дефектный вирус, для его размножения необходим вирус-помощник (вирус гепатита В).

Наличие сегментов увеличивает кодирующую емкость генома. Среди РНКсодержащих вирусов различают вирусы, имеющие плюс-нить РНК, и вирусы, содержащие минус-нить РНК. **Плюс-нить РНК** выполняет как наследственную (геномную) функцию, так и функцию информационной РНК (иРНК), так как они имеют характерные окончания ("шапочки") для распознавания рибосом клеток макроорганизма. Минус-нить РНК выполняет только наследственную функцию и не может выполнять функцию иРНК. Минус-нить РНК в инфицированной клетке служит матрицей для синтеза иРНК. Синтез комплементарной молекулы иРНК у таких вирусов происходит только в присутствии вирусного белка - фермента транскриптазы, который обязательно находится в структуре минус-нитевых вирусов (в клетках ее аналога нет).

Однонитевая линейная "+"РНК (полиовирус)
Однонитевая линейная "-" РНК (парагрипп)
Однонитевая линейная фрагментированная "-" РНК (грипп)
Двунитевая линейная фрагментированная РНК (ротавирус)

Рисунок 21 - Схематическое изображение основных типов генома РНК-содержащих вирусов.

Геном некоторых вирусов в процессе репродукции может включаться в хромосому инфицированной клетки и находиться в ней в виде **провируса** достаточно длительное время. В определенных условиях провирус "выщепляется" из хромосомной ДНК и участвует в образовании дочерних вирусных частиц (рисунок 22).

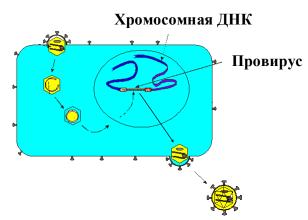


Рисунок 22 - Схематическое изображение интеграции вирусной нуклеиновой кислоты в геном клетки (состояние провируса).

Нуклеиновые кислоты других вирусов (например, вирусов герпеса) могут длительное время находиться в цитоплазме инфицированных клеток в виде

автономной структуры, напоминающей плазмиду.

У некоторых РНК-содержащих вирусов геном является **амбиполярным**, то есть содержит фрагменты нуклеиновой кислоты положительной и отрицательной полярности. Молекулярная масса генома у РНК-содержащих вирусов варьирует от 2 МД до 32 МД. Например, дельта-вирусы имеют однонитевую кольцевую минус-РНК, геном которой равен 2 МД, а тогавирусы содержат геном, представленный однонитевой линейной плюс-РНК размером 27-31 МД.

Вирусные белки

Белки составляют от 50 до 90% всей массы вирусов. По аминокислотному составу вирусные белки принципиально не отличаются от белков позвоночных. Основная часть белка входит в состав вирусных оболочек. Небольшое количество белка связано с нуклеиновой кислотой и сосредоточено в центральной части вириона. Вирусные белки подразделяются на структурные и неструктурные. Структурные вирусные белки входят в состав зрелых внеклеточных вирионов. В зависимости от места расположения в вирионе выделяют следующие структурные белки: капсидные белки, матриксные белки, суперкапсидные белки (рисунок 23).

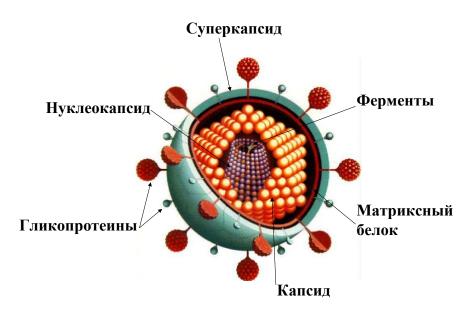


Рисунок 23 – Локализация структурных вирусных белков.

Белки вирусного капсида (капсомеры) являются собственно капсидными белками. Среди капсидных белков выделяют группу полипептидов, образующих комплекс с вирусными нуклеиновыми кислотами. Эти белки называются нуклеокапсидными (NP-белками). Некоторые вирусы в составе нуклеокапсида несут ферменты, необходимые для репликации вируса в инфицированной клетке. Например, в вирионах минус-нитевых РНК-содержащих вирусов имеется РНК-зависимая РНК-полимераза (транскриптаза); в вирионах ретровирусов присутствует РНК-зависимая ДНК-полимераза (обратная транскриптаза, ревертаза). У простых вирусов в составе капсида находятся также поверхностные или рецепторные белки.

Среди суперкапсидных белков выделяют наружный белок (выполняет

функции рецепторного белка), **мембранный белок** (обеспечивает интернализацию вируса, то есть проникновение вируса в клетку и его депротеинизацию) и **матриксный белок** (выполняет структурные функции). Суперкапсидные белки (**пепломеры**) располагаются в липопротеиновой оболочке сложных вирусов и являются гликопротеинами. У большинства сложных вирусов гликопротеины формируют на поверхности вириона выступы или шипы длиной 7-10 нм.

Неструктурные вирусные белки не входят в состав вириона. Они кодируются вирусным геномом, образуются внутри инфицированной клетки и принимают участие в процессах внутриклеточной репродукции вирусов. В последующем они не встраиваются в состав дочерних вирионов. К неструктурным белкам относятся регуляторы экспрессии вирусного генома, предшественники вирусных белков, ингибиторы клеточного биосинтеза, вирусные ферменты.

Вирусные белки выполняют следующие функции:

- 1. Защитная функция экранирование нуклеиновой кислоты вируса от ультрафиолетовых лучей, химических веществ, нуклеаз.
- 2. Адресная функция адсорбция вируса на клеточных рецепторах с помощью прикрепительных белков и проникновением вириона в чувствительную клетку хозяина. У сложных вирусов адресную функцию выполняют белки суперкапсида, а у простых вирусов один из белков капсида. На поверхности одной клетки имеется до 10^4 - 10^5 рецепторов для адсорбции вирусов. Для каждого вируса имеются определенные чувствительные клетки (тропизм вирусов): для вируса гриппа чувствительными клетками является мерцательный эпителий верхних дыхательных путей (эпителиотропный вирус), для вируса бешенства нейроны головного мозга (нейротропный вирус).
- 3. **Регулирующие функции** регулирование процессов репродукции вирусов. Эту функцию выполняют структурные или неструктурные вирусные белки (ферменты).

Ферменты играют важную роль в репродукции вируса, так как участвуют в репликации вирусных нуклеиновых кислот. Среди ферментов особое значение принадлежит ДНК-зависимой РНК-полимеразе и РНК-зависимой РНК-полимеразе или обратной транскриптазе. Вирусные ферменты подразделяются на вирионные и вирусиндуцированные.

Вирионные ферменты входят в состав внеклеточных вирионов, приносятся в клетку при инфицировании и участвуют в процессах репродукции вирусов. Они подразделяются на 2 группы: ферменты первой группы обеспечивают проникновение вирусных нуклеиновых кислот в клетку и выход дочерних вирусных популяций из клетки, а ферменты второй группы участвуют в процессах репликации и транскрипции вирусного генома внутри инфицированной клетки.

Вирусиндуцированные ферменты детерминированы вирусным геномом. Эти ферменты синтезируются непосредственно в клетках после инфицирования их вирусом, участвуют в процессах образования вирусного потомства, но в дальнейшем не входят в состав вирионов.

Липиды и полисахариды вирусов

В составе некоторых вирусов присутствуют липиды и полисахариды. Липиды локализуются в основном в суперкапсидной оболочке сложных вирусов. Вирионы приобретают липиды в составе фрагмента модифицированной цитоплазматической мембраны клеток в процессе репродукции при выходе из клетки путем почкования. Модификация включает встраивание в цитоплазматическую мембрану вирусных белков. Поэтому липидный состав вирионов отражает тот тип клетки, в которой размножался вирус (рисунок 24).

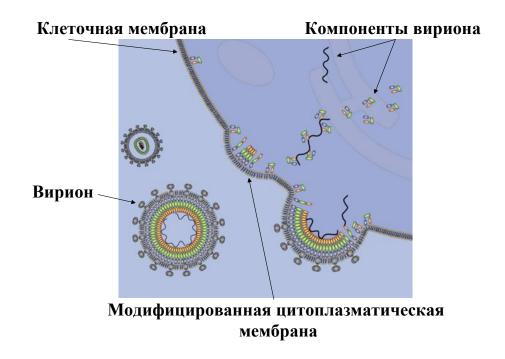


Рисунок 24 – Формирование суперкапсидной оболочки вирусов.

Количество липидов составляет 15-35% сухой массы сложных вирусов. В составе липидов обнаруживают фосфолипиды (50-60%) и холестерин (20-30%). Липидный компонент стабилизирует структуру вирусной частицы.

У оболочечных вирусов в составе суперкапсидной оболочки присутствуют гликопротеины и гликолипиды, содержащие углеводы. Их присутствие также связано с модификацией клеточной мембраны в процессе сборки и выхода вирионов из инфицированной клетки. Среди углеводов в вирионах в основном обнаруживают фруктозу, сахарозу, маннозу, галактозу. Углеводы обеспечивают конформацию белковых молекул и защищают их от действия протеаз.

Жизненный цикл вирусов

Под жизненным циклом понимают процесс репродукции (размножения) вируса внутри инфицированной клетки. Особенности репродукции вирусов зависят от типа вирусного генома. Однако существуют некоторые общие закономерности репродукции вирусов:

1. Все РНК-содержащие вирусы, кроме вирусов гриппа и ретровирусов,

репродуцируются в цитоплазме клетки. Геномы вирусов гриппа и ретровирусов при репродукции проникают в ядро инфицированной клетки.

- 2. **Репродукция всех ДНК-содержащих вирусов**, кроме вирусов оспы, **протекает как в ядре, так и в цитоплазме клетки**. При этом в ядре происходит транскрипция и репликация вирусных нуклеиновых кислот, а в цитоплазме клетки трансляция вирусных белков и сборка дочерних вирионов. Размножение вирусов оспы происходит полностью в цитоплазме клетки.
- 3. Нуклеокапсидные белки вирусов синтезируются на свободных полирибосомах (не связанных с мембраной), а суперкапсидные белки на рибосомах, ассоциированных с мембранами.
- 4. **Белки** некоторых вирусов после образования **подвергаются протеолитическому процессингу** (расщеплению или разрезанию).
- 5. Суперкапсидные белки оболочечных вирусов при транспортировке к клеточной мембране подвергаются гликозилированию.

Жизненный цикл вирусов включает следующие этапы (рисунок 25):

- 1. Адсорбция вирусов на мембране клетки (рецепция вируса).
- 2. Проникновение вируса в клетку.
- 3. Депротеинизация (освобождение вирусной нуклеиновой кислоты).
- 4. Синтез компонентов вирусов (вирусных нуклеиновых кислот и вирусных структурных белков).
 - 5. Формирование (сборка) зрелых дочерних вирионов.
 - 6. Выход дочерних вирионов из клетки.

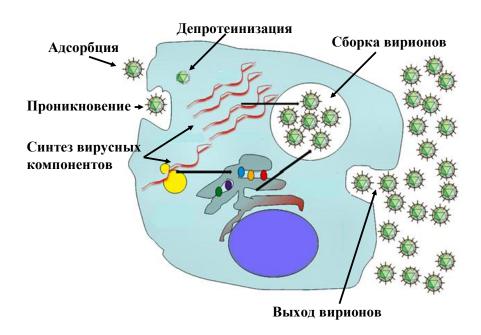


Рисунок 25 – Этапы жизненного цикла вирусов.

Адсорбция вируса на мембране клетки происходит путем взаимодействия вирусного белка (антирецептора) с клеточными рецепторами. Для каждого вируса на клеточной мембране существуют специфические рецепторы, с которыми вирусы связываются. По химической природе рецепторы, на которых фиксируются вирусы, могут быть мукопротеиновыми или липопротеиновыми. За распознавание

клеточных рецепторов отвечают белки вириона (капсидные или суперкапсидные).

Рецепторы вирионов называются **прикрепительными белками**. Они имеют форму нитей, шипов, грибовидных структур. Кроме рецепторов в процессе адсорбции играют роль противоположные заряды: вирусы несут отрицательный заряд, а участки клеточной стенки - положительный заряд. Процесс адсорбции протекает в течение 5-90 минут. На одной клетке адсорбируется множество вирусных частиц, так как количество специфических рецепторов на поверхности одной клетки составляет 10^4 - 10^5 . Процесс адсорбции вируса на поверхности клетки представлен на рисунке 26.

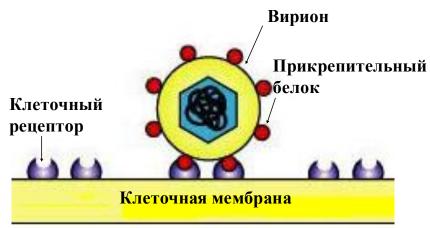


Рисунок 26 - Процесс адсорбции вируса на поверхности клетки.

Проникновение вируса в клетку происходит **путем слияния** вирусной оболочки с клеточной мембраной или путем **рецепторопосредованного** эндоцитоза.

Путем слияния суперкапсида с клеточной мембраной в клетку проникают в основном оболочечные вирусы. В этом процессе участвуют специфические **белки слияния**. При этом происходит высвобождение нуклеокапсида в цитоплазму клетки (рисунок 27).

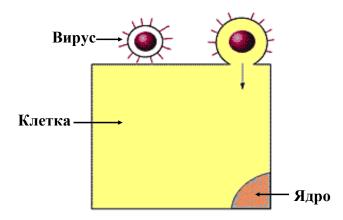


Рисунок 27 - Схема проникновения вируса в клетку путем слияния вирусной оболочки с клеточной мембраной.

Путем рецепторопосредованного эндоцитоза (виропексиса, пиноцитоза) в клетку проникают в основном безоболочечные вирусы. Вначале вирус связывается со специфическими рецепторами на клеточной поверхности. Затем происходит

инвагинация (впячивание) клеточной мембраны, образование внутриклеточных вакуолей (эндосом) и их слияние с лизосомами. В дальнейшем вирусный геном в цитоплазме клетки высвобождается из эндосомы (рисунок 28).

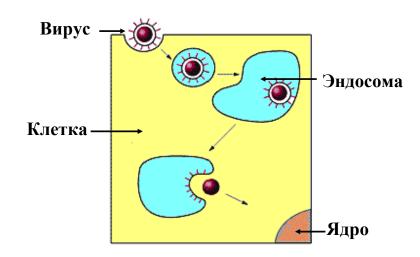


Рисунок 28 — Схема проникновения вируса путем рецепторопосредованного эндоцитоза.

Депротеинизация (освобождение вирусной нуклеиновой кислоты или раздевание вируса) происходит с помощью протеолитических ферментов клетки (протеаз и липаз). Смысл раздевания заключается в удалении вирусных оболочек. Конечными продуктами раздевания вирусов являются сердцевины, нуклеокапсиды или нуклеиновые кислоты. Для некоторых вирусов конечным продуктом являются нуклеиновые кислоты, связанные с внутренним вирусным белком.

После депротеинизации вирусы невозможно выделить из культуры клеток. Этот этап репродукции известен как **теневая фаза (фаза эклипса** или затмения), во время которой вирус перестает существовать как оформленный вирион.

Этапы проникновения и депротеинизации вируса объединяются в стадию интернализации.

Синтез компонентов вирусов включает репликацию вирусных нуклеиновых кислот и синтез вирусных белков. В зависимости от типа вирусного генома (ДНК-содержащие или РНК-содержащие вирусы) синтез компонентов дочерних вирионов протекает либо в цитоплазме, либо в цитоплазме и ядре клетки.

У ДНК-содержащих вирусов проникший в цитоплазму нуклеокапсид транспортируется к ядру клетки. Вирусная ДНК проникает в клеточное ядро, где протекает транскрипция - переписывание информации с ДНК на РНК с помощью РНК-полимеразы. Исключение составляет ДНК-зависимой клеточной содержащий вирус оспы, у которого транскрипция протекает в цитоплазме клетки вирусспецифического (ДНК-полимеразы), участии фермента проникает в клетку в составе вириона. В результате транскрипции на матрице одной из нитей ДНК синтезируется иРНК, которая перемещается в цитоплазму клетки и запускает процесс трансляции - перевода генетической информации с иРНК на последовательность аминокислот в вирусных белках. Синтез белков происходит на рибосомах клетки. Одновременно в ядре клетки протекает процесс репликации

(образование дочерних нуклеиновых кислот на матрице материнской ДНК). Синтезированные дочерние молекулы ДНК в составе нуклеокапсида перемещаются из ядра клетки в цитоплазму путем почкования, захватывая фрагмент ядерной мембраны. В цитоплазме клетки завершается сборка дочерних вирионов и их выход из клетки.

Таким образом, реализация генетической информации у ДНК-содержащих вирусов идет следующим образом:

Плюс-РНК-содержащие вирусы адсорбируются на специфических клеточных рецепторах, и вирион захватывается клеточной мембраной, которая впячивается внутрь клетки с образованием вакуоли. Репликация плюс-РНК вирусов происходит непосредственно в цитоплазме клеток. При этом функции иРНК выполняет сам геном. Вирусная плюс-РНК высвобождается в цитоплазме, а затем рибосомами. этого образуется большая транслируется В результате полипротеиновая молекула. Клеточные протеазы "нарезают" образующийся вирусный полипротеин на структурные и неструктурные вирусные белки. При этом образуется РНК-зависимая РНК-полимераза, которая способствует образованию минус-РНК на матрице родительской плюс-РНК. На матрице минус-РНК происходит синтез молекул плюс-РНК, участвующих в биосинтезе белков дочерних вирионов. Высвобождение дочерних вирионов сопровождается лизисом клетки или происходит путем почкования. У ретровирусов при репродукции образуется промежуточный продукт в виде молекулы ДНК.

Таким образом, реализация генетической информации у позитивных РНК-содержащих вирусов идет без этапа транскрипции:

плюс-РНК
$$\rightarrow$$
 трансляция \rightarrow белок

Минус-РНК-содержащие вирусы проникают в клетку путем адсорбции и слияния с клеточной мембраной. Геном таких вирусов не может выполнять функцию иРНК, поэтому в цитоплазме клетки на матрице минус-РНК вначале синтезируется плюс-РНК. Этот процесс катализируется РНК-зависимой РНКполимеразой (транскриптазой), находящейся в составе проникшего в клетку вириона. При синтезе плюс-РНК образуются полные нити и короткие нити. Короткие плюс-РНК-нити участвуют в синтезе ферментов и белков для дочерних популяций. Полные нити плюс-РНК служат матрицей для синтеза молекул минус-Дочерние РНК дочерних вирионов. вирионы транспортируются высвобождаются модифицированным участкам клеточной мембраны почкованием, захватывая фрагмент клеточной мембраны. Этот фрагмент клеточной мембраны служит для вирусной частицы суперкапсидом.

Таким образом, реализация генетической информации у РНК-содержащих вирусов с негативным геномом по следующей схеме:

минус-РНК
$$\rightarrow$$
 транскрипция \rightarrow иРНК \rightarrow трансляция \rightarrow белок

РНК-содержащие ретровирусы имеют уникальный путь репродукции. После проникновения в клетку генетическая информация с РНК этих вирусов переписывается на ДНК. Этот процесс называется обратной транскрипцией. Для его осуществления требуется специфический фермент - обратная транскриптаза или ревертаза. Этот фермент приносится в клетку в составе ретровирусов. Затем вновь образованная ДНК интегрирует с клеточным геномом и в его составе участвует в образовании иРНК, необходимой для синтеза вирусных белков. Транскрипцию интегрированной ДНК в составе клеточных геномов (переписывание информации с ДНК на иРНК) осуществляет клеточная ДНК-зависимая РНК-полимераза.

Таким образом, у ретровирусов отмечается уникальный путь передачи генетической информации:

$$PHK o обратная транскрипция o ДНК o транскрипция o иРНК o трансляция o белок$$

эукариотической вирусные белки клетке многие подвергаются гликозилированию, посттрансляционным модификациям: ацилированию, сульфированию, протеолитическому нарезанию фосфорилированию. И Гликозилирование белков заключается в присоединении К углеводных остатков. Образовавшиеся гликопротеины входят в состав вирусных оболочек и находятся на поверхности вирусных частиц. Ацилирование белков заключается в присоединении к протеину 1-2 молекул жирных Сульфирование белков протекает путем связывания с углеводными остатками гликопротеина сульфатной группы. Протеолитическое нарезание характерно для многих вирусных белков. Оно осуществляется клеточными ферментами в специфических точках полипептидной молекулы. После этого белки приобретают функциональную активность. Фосфорилирование характерно связанных с вирусным геномом. Оно осуществляется как вирусными, так и клеточными ферментами.

Таким образом, синтез нуклеиновых кислот и вирусных белков протекает в разных структурах клетки, то есть синтез компонентов вирионов в клетке разобщен. Такой способ репродукции вирусов называется дизъюнктивным (разобщенным). Сборка дочерних вирионов возможна только при специфическом узнавании вирусных нуклеиновых кислот и белков и самопроизвольном их соединении друг с просто устроенных вирусов нуклеиновая кислота взаимодействуют на мембранах эндоплазматического ретикулума, в результате чего формируется упорядоченная структура. У сложно устроенных вирусов сборка осуществляется многоступенчато. Вначале нуклеиновые кислоты взаимодействуют внутренними белками, образуя нуклеокапсиды (сердцевины). нуклеокапсиды выстраиваются с внутренней стороны клеточной мембраны под теми участками, которые модифицированы оболочечными вирусными белками. В результате этого происходит самосборка вирусных частиц. Количество зрелых вирионов в одной клетке колеблется от 10 до 10000 и более.

Выход вирионов из клетки (высвобождение дочерних вирионов) осуществляется двумя способами: путем лизиса клетки (взрывной способ выхода) и

путем почкования. Выход из клетки путем лизиса ("взрыва") связан с деструкцией клетки. Такой способ характерен для безоболочечных вирусов, у которых отсутствует суперкапсидная оболочка. Выход вирионов из клетки путем почкования характерен для оболочечных вирусов. При этом способе клетка может некоторое время сохранять жизнеспособность и многократно продуцировать вирусное потомство, пока не истощатся ее ресурсы. Вирусы, содержащие суперкапсид, высвобождаются медленно (в течение 2-6 часов). Вначале у них суперкапсидные белки устанавливаются на наружной поверхности клеточной мембраны в виде своеобразных шипов, вытесняя клеточные белки. Затем через модифицированную клеточную мембрану проходит нуклеокапсид с образованием оболочки. Сначала модифицированные суперкапсидной участки мембраны с заключенными в них вирионами выпячиваются наружу через бреши, а затем отпочковываются. Образно говоря, клетки не только кормят и поят оболочечный вирус, но и на прощание одевают его. Весь цикл репродукции у РНКвирусов продолжается 4-8 часов, а у ДНК-вирусов – 12-24 часа.

Вопросы для самоконтроля усвоения материала

- 1. Какую форму имеют вирионы?
- 2. Какими методами изучают размеры и форму вирионов?
- 3. Каковы особенности строения вирусов бактерий?
- 4. На какие типы подразделяются вирионы по своей структуре?
- 5. Охарактеризуйте строение просто устроенных вирусов.
- 6. Каково строение сложно устроенных вирусов?
- 7. Назовите типы симметрии вирусов.
- 8. Каковы функции нуклеиновых кислот вирусов?
- 9. В чем отличие позитивных и негативных вирусных РНК?
- 10. Назовите виды вирусных белков.
- 11. Каковы функции вирусных белков?
- 12. Какие вирусные ферменты Вы знаете?
- 13. Дайте характеристику липидов, входящих в состав вирионов.
- 14. Охарактеризуйте углеводы, входящие в состав вирионов.
- 15. Что такое жизненный цикл вирусов?
- 16. Назовите этапы жизненного цикла вирусов.
- 17. Расскажите о репродукции ДНК-содержащих вирусов.
- 18. Расскажите о репродукции плюс-РНК-содержащих вирусов.
- 19. Расскажите о репродукции минус-РНК-содержащих вирусов.
- 20. Какими способами дочерние вирионы выходят из клетки?

Тестовый контроль

- 1. Приоритет открытия вирусов принадлежит:
- А. Левенгуку
- P. Koxy

- И.И. Мечникову
- Д.И. Ивановскому*
- Л. Пастеру
- 2. Уникальными свойствами вирусов являются:
- облигатный внутриклеточный паразитизм*
- наличие двух типов нуклеиновых кислот (ДНК и РНК)
- наличие только одного типа нуклеиновой кислоты (ДНК или РНК)*
- дизъюнктивный способ репродукции*
- рост на сложных питательных средах
- 3. Химический состав вирусов представлен:
- пептидогликаном
- белками*
- нуклеиновыми кислотами *
- углеводами *
- липидами *
- 4. Структурными компонентами вирусов являются:
- ядро
- капсид*
- клеточная стенка
- геном*
- суперкапсид*
- 5. Морфологическими субъединицами капсида вирусов являются:
- нуклеиновые кислоты
- капсомеры *
- тейхоевые кислоты
- пили
- полисахариды
- 6. Типы симметрии вирусов:
- круговой
- спиральный*
- сегментированный
- кубический*
- комбинированный*
- 7. Молекулярную массу вирусов определяют с помощью:
- аналитических весов
- фильтрации через бактериальные фильтры
- электронной микроскопии
- ультрацентрифугирования*
- световой микроскопии

- 8. Оболочечные вирусы чувствительны к:
- антибиотикам
- эфиру*
- хлороформу*
- сульфаниламидам
- желчным кислотам
- 9. В основу современной классификации вирусов заложены следующие критерии:
 - тип нуклеиновой кислоты*
 - тип симметрии*
 - наличие или отсутствие суперкапсида*
 - облигатный внутриклеточный паразитизм*
 - круг восприимчивых хозяев*
 - 10. Размеры вирусов выражаются в:
 - метрах
 - сантиметрах
 - микрометрах
 - нанометрах*
 - миллиметрах
 - 11. По форме вирусы подразделяются на:
 - кубические
 - сферические*
 - пулевидные*
 - палочковидные*
 - цилиндрические
 - 12. Вирусы размножаются:
 - спорами
 - митозом
 - бинарным делением
 - дизъюнктивной репродукцией*
 - почкованием
 - 13. Процесс репродукции вирусов начинается со стадии:
 - проникновения вируса в клетку
 - адсорбции на клетке*
 - синтеза нуклеиновой кислоты
 - синтеза белка
 - депротеинизации
 - 14. В состав сложных вирусов входит:
 - геном (ДНК или РНК)*
 - аппарат Гольджи

- рибосомы
- капсид*
- суперкапсид*
- 15. Вирусный геном, выполняющий в процессе репродукции функцию иРНК, называется:
 - репродуктивным
 - вирулентным
 - плюс-нитевой РНК*
 - рекомбинантным
 - минус-нитевой РНК
 - 16. Характерными свойствами вирусов являются:
 - наличие одного типа нуклеиновой кислоты*
 - способность синтезировать токсины
 - отсутствие белоксинтезирующего аппарата*
 - дизъюнктивный тип репродукции*
 - способность к росту на сложных питательных средах

17. В состав простых вирусов входят:

- нуклеиновая кислота*
- капсид*
- суперкапсид
- матриксный белок
- аппарат Гольджи

18. В состав сложных вирусов входят:

- геном*
- мезосомы
- суперкапсид*
- матриксный белок*
- лизосомы
- 19. Выход дочерней вирусной популяции из инфицированной клетки происходит путем:
 - эндоцитоза
 - почкования*
 - лизиса клетки*
 - деления клетки
 - образования цист

20. Сборка дочерних вирионов протекает:

- во внеклеточном пространстве
- в клеточной стенке
- в рибосомах
- в цитоплазме клеток*

- в ядре клеток*

Примечание: знаком * отмечены правильные ответы.

Список литературы

- 1. Воробьев А.А. Медицинская и санитарная микробиология: учеб. пособие для студ. высш. мед. учеб. заведений / А.А. Воробьев, Ю.С. Кривошеин, В.П. Широбоков. 2-е изд., стер. М.: Издательский центр "Академия", 2006. 464 с.
- 2. Воробьев А.А., Быков А.С., Пашков Е.П., Рыбаков А.М. Микробиология: Учебник. 2-е изд., перераб. И доп. М.: Медицина, 1998. 336 с.: ил.
- 3. Коротяев А.И., Бабичев С.А. Медицинская микробиология, иммунология и вирусология: Учебник для мед. вузов. 3-е изд., испр. и доп. СПб.: МпецЛит, 2002. 591 с.: ил.
- 4. Медицинская вирусология: Руководство / Под ред. Д.К. Львова. М.: ООО "Медицинское информационное агентство", 2008. 656 с.
- 5. Медицинская микробиология, вирусология и иммунология: Учебник для студентов медицинских вузов / Под ред. А.А. Воробьева. 2-е изд., испр. и доп. М.: ООО "Медицинское информационное агентство", 2006. 704 с.; ил., табл.
- 6. Пожарская В.О., Райкис Б.Н., Казиев А.Х. Общая микробиология с вирусологией и иммунологией (в графическом изображении). Учебное пособие. М.: "Триада X", 2004.-352 с.
- 7. Поздеев О.К. Медицинская микробиология / Под ред В.И. Покровского. 3-е изд., стереотип. М.: ГЭОТАР-Медиа, 2005. 768 с.: ил.
- 8. Информационные ресурсы (WEB-ресурсы) по медицинской микробиологии и иммунологии (Интернет сайты):
 - http://www.microbiology.ru
 - http://ru.wikipedia.org
 - http://www.virology.net
 - http://www.rusmedserv.com
 - http://www.molbiol.ru

Иллюстрированное учебное пособие

Литусов Николай Васильевич Устюжанин Александр Владимирович

Структура и репродукция вирусов