марганец и некоторые другие, важные для оптимального процесса очистки воды.

ОБСУЖДЕНИЕ

Полученные результаты схожи с результатами апробации и стандартизации исследования Ивлеева А.А., Тихмяновой В.Л., Можайцевой В.В., Трушина В.В., Хаханова С.А.: Способ очистки и обеззараживания воды (варианты) и установка для очистки и обеззараживания воды.

ВЫВОДЫ

- 1. Разработанный учебный фильм предназначен для привлечения внимания школьников, студентов к проблеме очистки питьевой воды централизованных систем.
- 2.Обучает способам очистки, анализа, знакомит с современными технологиями.
- 3. Исследовательский фильм может использоваться в качестве учебного фильма по дисциплинам: «Коммунальная гигиена», «Экология человека», «Общая гигиена», в социальных сетях с целью гигиенического воспитания населения.

СПИСОК ИСТОЧНИКОВ

- 1. Кичигин В. И. Моделирование процессов очистки воды / В.И. Кичигин. М.: Издательство Ассоциации строительных вузов, 2013. 232 с.
- 2. Воронов Ю. В. Водоотведение и очистка сточных вод / Ю.В. Воронов. М.: Издательство Ассоциации строительных вузов, 2013. 704 с.
- 3. Луканин А.В. Инженерная экология: процессы и аппараты очистки сточных вод и переработки осадков. Учебное пособие: моногр. / А.В. Луканин. М.: ИНФРА-М, 2017. 205 с.
- 4. Никита Корзун Биотехнологии очистки сточных вод городов предприятий / Корзун Никита, Эльвира Василевич und Анна Комарова. М.: Palmarium Academic Publishing, 2014. 252 с.

Сведения об авторах

Е.М. Шаренко – студент

Н.А. Бронских – студент

А.А. Самылкин – кандидат медицинских наук, доцент

Е.Е.Шмакова – ассистент кафедры

Information about the authors

E.M. Sharenko – student

N.A. Bronskikh – student

A.A. Samylkin – Candidate of Sciences (Medicine), Associate Professor

E.E. Shmakova – assistant of the department

УДК: 613.6.02

ОСОБЕННОСТИ ПРОНИКНОВЕНИЯ НАНОЧАСТИЦ ОКСИДА СВИНЦА В ГОЛОВНОЙ МОЗГ КРЫСЫ

Иван Глебович Шеломенцев¹, Лев Александрович Амромин², Анастасия Валерьевна Тажигулова³

¹⁻³ФБУН «Екатеринбургский медицинский научный центр профилактики и охраны здоровья рабочих промпредприятий», Екатеринбург, Россия ¹shelomencev@ymrc.ru

Аннотация

Введение. Способность НЧ РьО проникать в мозг и вызывать там повреждения на сегодняшний день изучена недостаточно. Методы электронной микроскопии и энергодисперсионной рентгеновской спектроскопии позволяют выявлять и качественно идентифицировать НЧ. Цель исследования особенностей проникновения наночастиц оксида свинца (НЧ PbO) в головной мозг. Материалы и методы. Белые аутбредные крысы-самки подвергались воздействию НЧ PbO объемом 50+50 мкл в концентрации 0,5 мг/мл путем интраназального введения 3 раза в неделю на протяжении 6 недель. Сканирующая-просвечивающая электронная микроскопия (STEM) использовалась для идентификации НЧ РbO в обонятельных луковицах и базальных ядрах головного мозга крыс. Результаты. Отложения НЧ РЬО были найдены в обонятельных луковицах, но не были обнаружены в базальных ядрах. Обсуждение. Наночастицы проникали в мозг крысы по ольфакторному пути, что подтверждается их обнаружением в обонятельных луковицах и их отсутствием отдаленных участках мозга. Выводы. Проведенные исследования подтверждают высокий проницаемости уровень гематоэнцефалического барьера ДЛЯ металлсодержащих наночастиц. Установлена тенденция попадания НЧ PbO в головной через обонятельный нерв для интраназального метода введения.

Ключевые слова: Электронная микроскопия, наночастицы оксида свинца, головной мозг.

FEATURES OF PENETRATION OF LEAD OXIDE NANOPARTICLES INTO THE RAT BRAIN

Ivan G. Shelomentsev¹, Lev A. Amromin², Anastasia V. Tazhigulova³

¹⁻³Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia

¹shelomencev@ymrc.ru

Abstract

Introduction. The ability of lead oxide nanoparticles (PbO NPs) to penetrate the brain and cause damage has not been sufficiently studied so far. The methods of electron microscopy and energy-dispersive X-ray spectroscopy make it possible to detect and qualitatively identify NPs. **The aim of the study** – to examine PbO NPs penetration into the brain. **Materials and methods.** Outbred albino female rats were exposed to PbO NPs at a concentration of 0.5 mg/mL by intranasal administration of $50+50~\mu$ L of suspension thrice a week for 6 weeks. Scanning transmission electron microscopy (STEM) was then used to identify PbO NPs in the olfactory bulbs and basal nuclei of the rat brain. **Results.** Deposits of PbO NPs were observed in the olfactory bulbs but not in the basal ganglia. **Discussion.** Nanoparticles penetrated the

rat brain through the olfactory pathway, which is confirmed by their detection in the olfactory bulbs and their absence in remote areas of the brain. **Conclusions.** The study confirms high permeability of the blood-brain barrier for metal-containing nanoparticles. We established tendency for PbO NPs to enter the brain through the olfactory nerve following intranasal administration.

Keywords: electron microscopy, lead oxide nanoparticles, brain.

ВВЕДЕНИЕ

Наночастицы оксида свинца являются побочным продуктом технологических процессов. Аэрозоль содержащий свинец различной дисперсности широко распространен в воздухе рабочих зон и окружающей атмосфере, в его состав входят не только, относительно крупные, микронные частицы, но и наночастицы РьО размером менее 100нм [1].

Металлсодержащие наночастицы способны проникать в мозг через гематоэнцефалический барьер. В данном контексте интраназальный путь введения представляет особенный интерес, поскольку, активно задействует ольфакторный транспорт [2]. Способность НЧ РbO проникать в мозг и вызывать там повреждения на сегодняшний день изучена недостаточно.

Методы электронной микроскопии и энергодисперсионной рентгеновской спектроскопии позволяют выявлять и качественно идентифицировать НЧ наночастицы в тканях, клетках и субклеточных структурах [3].

Цель исследования — изучение особенностей проникновения наночистиц оксида свинца в головной мозгметодами электронной микроскопии и энергодисперсионной рентгеновской спектроскопии.

МАТЕРИАЛЫ И МЕТОДЫ

Эксперимент проводился на аутбредных крысах-самках собственного разведения по 14 животных в каждой группе. Средний возраст животных на начало эксперимента составил 3-4 месяца, масса тела — около 200 г.

Суспензия наночастиц PbO была синтезирована методом лазерной абляции тонких металлических листовых мишеней свинца 99,99% чистоты в стерильной деионизированной воде. Средний диаметр использованных наночастиц PbO составил $49,6\pm16$ нм, концентрация суспензии составляла 0,5 мг/мл. Стабильность суспензий характеризовалась величиной дзета-потенциала -42 mV, измеренного с помощью анализатора ZetasizerNano ZS (Malvern, Великобритания).

Введение наночастиц животным осуществлялось интраназально без анестезии. В каждый носовой ход вводилось по 50 мкл суспензии наночастиц РьО концентрацией 0,5 мг/мл три раза в неделю в течении 6 недель. Суммарная доза за весь экспозиционный период составила 0,9 мг на крысу. Контрольной группе вводили деионизированную воду в том же объеме. Эвтаназия осуществлялась методом быстрой декапитации.

Для исследования особенностей проникновения наночастиц (НЧ PbO) в головной мозг были отобраны образцы обонятельных луковиц и базальных ядер головного мозга крысы контрольной (n=7) и опытной (n=6) групп.

Образцы головного мозга (~1 мм³) фиксировали в растворе глутаральдегида на фосфатном буфере (рH=7,4). Постфиксировали раствором тетроксида осмия, обезвоживали в восходящей серии этанола. Для замещения спирта использовалась окись пропилена. Далее заливали в смолу Epon812 и полимеризовали.

Ультратонкие срезы (70 нм) были визуализированы с использованием сканирующего электронного микроскопа Hitachi REGULUS SU8220 в режиме STEM. Для подтверждения наличия наночастиц PbO использовали безоконный детектор EDS Ultim Extreme (Oxford Instruments, Англия). Спектры анализировались программным обеспечением Aztec (Oxford Instruments, Англия).

РЕЗУЛЬТАТЫ

Для определения наличия наночастиц PbO в тканях методом электронной микроскопии (STEM) было просмотрено 130 срезов в 26 образцах, отобранных у 13 крыс контрольной (n=7) и опытной (n=6) групп.

В образцах обонятельных луковиц опытной группы были обнаружены как одиночные НЧ, так и скопления наночастиц РьО (рис. 1, 2). В то время, в базальных ядрах наночастицы РьО обнаружены не были.

ОБСУЖДЕНИЕ

Методы электронной микроскопии в совокупности с применением энергодисперсионной рентгеновской спектроскопии позволили не только визуализировать непостредственную локацию наночастиц в тканях головного мозга, но и точечно определить элементный состав отдельных участков исследуемых образцов. Данный подход обуславливает высокую точность полученных результатов, в отличии от изолированного использования ЭМ в качестве источника визуализации. Подобный уровень достоверности достигается отделением оценочного суждения автора о наблюдаемых объектах и замены его показаниями ЭДС.

Тот факт, что наночастицы PbO не были обнаружены в образцах базальных ядер и их наличие в обонятельных луковицах, говорит о неравномерности их распределения по головному мозгу крысы. Вместе с тем, это согласуется с теорией миграции НЧ в головной мозг по обонятельному нерву при попадании через дыхательные пути. Наночастицы в большей степени проникают в мозг по ольфакторному пути, чем через систему кровообращения. В других исследованиях, данное свойство было отмечено как для НЧ PbO [4], так и для иных металлосодержащих наночастицах [5].

Стоит отметить, что наночастицы НЧ РbO локализовались в цитоплазме нейронов, на стенках кровеносных сосудов и в межклеточном пространстве, но не были обнаружены внутри каких-либо субклеточных структур (митохондрии, ядро и др.), что не согласуется с результатами предыдущих исследований [6]. Точная причина данного явления не ясна. Однако, можно связать в первую очередь с относительно низкой концентрацией суспензии НЧ РbO и суммарной дозы, относительно других исследований. Во-вторых, с методом введения НЧ РbO. Так как при введении препарата в виде капли часть суспензии задерживается в носоглотке, в то время как другая ее часть попадает в легкие и

желудок. Что за собой ведет к еще большему снижению дозы НЧ, попавших в ольфакторную область.

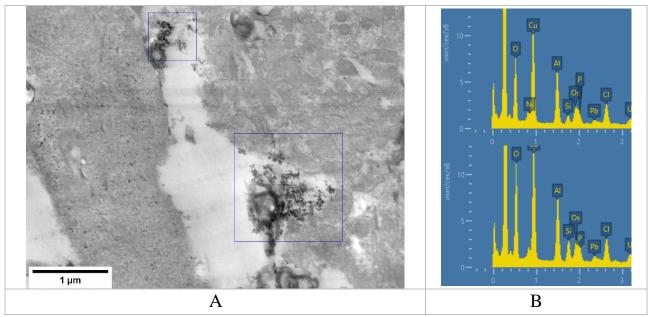


Рис. 1. (A) STEM-изображение обонятельной луковицы опытной группы со скоплениями наночастиц PbO. (B) Спектры ЭДС

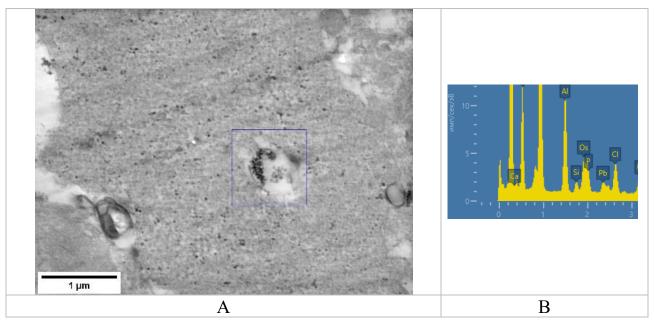


Рис. 2. (A) STEM-изображение обонятельной луковицы опытной группы со скоплениями наночастиц PbO. (B) Спектры ЭДС

ВЫВОДЫ

Методы электронной микроскопии позволили в данном исследовании изучить особенности проникновения наночастиц оксида свинца в головной мозг при интраназальном методе введения в виде суспензии.

Проведенные исследования подтверждают:

- высокий уровень проницаемости ГЭБ для НЧ РbO;
- тенденциюмиграции HЧ PbO в головной мозг через обонятельный нерв;

– приоритет ольфакторного пути в переносе НЧ РbO над системой кровообращения.

Данная тема требует дальнейшего исследования для определения локализации НЧ и в других отделах мозга, а так установить зависимость распределения НЧ в головном и спинном мозге от дозы и метода введения.

СПИСОК ИСТОЧНИКОВ

- 1. Биохимические эффекты у рабочих, подвергающихся влиянию аэрозолей металлургического производства меди, содержащих наночастицы. / Гурвич В.Б., Кацнельсон Б.А., Рузаков В.О. и др. // Актуальные гигиенические аспекты нанотоксикологии: теоретические основы, идентификация опасности для здоровья и пути ее снижения: Материалы международной конференции. 20-21 октября 2016 г. Екатеринбург. 2016. С. 21-23.
- 2. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system / Elder A., Gelein R., Silva V. et al. // Environ Health Perspect. 2006; 114(8): 1172–1178.
- 3. Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques / Ostrowski A., Nordmeyer D., Boreham A. et al. // Beilstein J Nanotechnol. 2015; 6: 263-280.
- 4. Sub-chronic inhalation of lead oxide nanoparticles revealed their broad distribution and tissue-specific subcellular localization in target organs / Dumková J., Smutná T., Vrlíková L.et al. // Part FibreToxicol. 2017;14:55.
- 5. In vivo toxicity of copper oxide, lead oxide and zinc oxide nanoparticles acting in different combinations and its attenuation with a complex of innocuous bio-protectors / Minigalieva I.A., Katsnelson B.A., Panov V.G. et al. // Toxicology. 2017; 380: 72-93.
- 6. Manifestation of systemic toxicity in rats after a short-time inhalation of lead oxide nanoparticles / Sutunkova M.P., Solovyeva S.N., Chernyshov I.N. et al. // Int J Mol Sci. 2020; 21(3): 690.

Сведения об авторах

- И.Г. Шеломенцев младший научный сотрудник
- Л.А. Амромин младший научный сотрудник
- А.В. Тажигулова младший научный сотрудник

Information about the authors

- I.G. Shelomentsev researcher
- L.A. Amromin researcher
- A.V. Tazhigulova researcher