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Abstract. The paper develops a mathematical model describing the behavior of the human cornea affected by intraocular 
pressure and external factors. The relevance of the study stems, particularly, from the urgent ophthalmological problems 
of hyperopia treatment. An effective remedy for hyperopia treatment is laser vision correction consisting in cornea 
deformation. The mathematical model enables the condition of the cornea after surgery to be estimated. The proposed 
model is based on the calculation of the cornea stress-strain state via the solution of a boundary value problem of 
elastostatics. 

INTRODUCTION 

The problem of mathematical modeling of the functioning of human organs is currently an inseparable part of 
the development of new methods for diagnosis, treatment, and prevention of numerous diseases. This paper 
proposes a mathematical model of the behavior of the human cornea, which may be applicable to the surgical 
treatment of hyperopia. 

At present, prevention and treatment of abnormal eye refraction is an urgent ophthalmological problem. 
Hyperopia (farsightedness) is the most widespread deviation, found in 30 to 40% of the population in Russia [1]. 
The quality of vision in patients is largely affected by hyperopia of grades 2 and 3. In most cases, hyperopia is a 
congenital anomaly of refraction caused by antenatal eyeball underdevelopment or maldevelopment. At the same 
time, hyperopia below 3.0 D is a widespread and normal kind of refraction in early-year children, but its value 
decreases with age, up to complete disappearance due to eye growth [1, 2]. In many studies, the evaluated 
percentage of hyperopia above 2 D at the age under 5 fluctuates from 4 to 26%, and it ranges between 1 and 9% at 
the age above 15 [3–6]. Herewith, there is a further increase in the number of cases of hyperopia. According to the 
data provided by the National Eye Institute, USA, the number of cases of hyperopia increased by 16% between 2000 
and 2010, and it is predicted to increase by 41% in 2030 as compared to 2000 [2]. Thus, hyperopia is a serious 
medical and social problem tending to become worse. Laser vision correction consisting in cornea deformation is the 
most effective medication for treating hyperopia. The mathematical model enables the cornea condition after surgery 
to be estimated. 

The mathematical description of the cornea behavior is based on a model of elastic deformation and the stress-
strain state (SSS) calculation procedure. Most of the so-far developed mathematical human eye models are based on 
the finite element method (FEM) and implemented in the ANSYS engineering analysis software package [7–12], the 
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cornea being generally represented by a spherical structure. The shell theory was used in [13, 14] to determine the 
cornea SSS. Earlier, we developed algorithms and programs for solving one-dimensional and plane problems of the 
elasticity and heat conduction by the boundary element method [15–20]. In solving plane problems, we used 
formulas for analytic integration of influence functions over the boundary elements [21], which considerably 
increases solution accuracy. Besides, a technology and program for solving the axisymmetric problem for Poisson’s 
equation was developed [22], where analytic integration is inapplicable. The approach proposed in [22] is here 
extended to solving elastostatic problems. 

BOUNDARY VALUE PROBLEM STATEMENT 

The proposed model of cornea behavior is based on the calculation of the cornea stress-strain state by solving the 
static boundary value problem of the elasticity theory:  

in the domain V , 

 0, iijσ , (1) 

   2,, ijjiij uu ε , (2) 

 ijijij εδ
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21
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on the inner cornea surface 1S , the intraocular pressure is given as 

 *
ii ff  ; (4) 

on the outer cornea surface 2S  there is atmospheric pressure 

 0if ; (5) 

on the cornea-sclera interface 3S , rigid attachment is specified as 

 0iu . (6) 

Here, ijσ  is stress tensor components, jiji nf σ  is surface stress vector components, iu  is displacement vector 

components, ijε  is strain tensor components, iiεε  , ijδ  is the Kronecker delta, μ  and ν  are elastic constants. The 

problem is considered in the axisymmetric statement, Fig. 1. The solution domain is V , the generatrix of the domain 

V , which lies in the half-plane zr . 

SOLUTION ALGORITHM 

The solution of the problem (1) – (6) by the boundary element method in cylindrical coordinates reduces to the 

boundary integral equation for the boundary point 321 SSSS ξ  [23], 
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where the subscripts i  and j  take the values r , z ,  xuij ,* ξ ,  xf ij ,* ξ  are the kernel functions 
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Here,  ξrR  ,  ξzZ  ,  xrr  ,  xzz   are the cylindrical coordinates of the points ξ  and x , zZZ  , 
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the boundary S . The Legendre functions  γ21Q ,  γ21Q  and their derivatives can be represented in terms of 

complete elliptic integrals of the first and second kinds as 
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where  mK  and  mE  are first- and second-kind complete elliptic integrals respectively, 
γ


1

2
m , mk  .  

To solve the boundary integral equation (7), we divide the boundary S  into 321 nnnN   straight boundary 

elements as follows: 
1

,...,1 nee   on the boundary 1S , 
211

,...,1 nnn ee    on the boundary 2S , and Nnn ee  ,...,121   on 

the boundary 3S . Assuming a constant approximation of displacements iu  and surface stresses if  on the boundary 

element, in view of the boundary conditions (4) – (6), we obtain the following system of linear algebraic equations, 
corresponding to equation (7): 
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Here, kξ  is the node located in the middle of the boundary element ke ,  k
iu  and  k

if  are the values of 

displacements and surface stresses on the element ke . The values  k
iu  on the boundaries 1S  and 2S  and the values 

 k
if  on the boundary 3S  are the unknowns in system (10). The solution of the system will determine the 

displacements in the domain V , 
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The continuous form of the solution (11) allows the stress distribution in the domain  V  to be determined 
according to equations (2) and (3). 

The developed algorithm enables us to identify the shape of a human cornea and the distribution of stresses 
inside it at specified parameters. The solution is obtained in the form of a smooth function, this being essentially 
advantageous for its analysis over the finite element solution. 

At the next stage of the study, the constructed algorithm can be applied to the calculation of the SSS in the 
cornea after laser vision correction surgery, its result being identification of the cornea shape after the surgery. 

SOFTWARE IMPLEMENTATION 

The discussed solution algorithm is implemented in the form of software written in C++ with the use of 
concurrent programming technologies. The program window is shown in Fig. 2. The finite element integrals 
involved in equations (10) and (11) are calculated numerically with the use of the simple Gaussian quadrature, 
except for the integrals over the elements containing points of singularity of elliptic integrals. The computation of 
singular integrals employs an adaptive numerical integration algorithm taking into account the known coordinates of 
singular points. 

The GSL library [24] and the Boost library collection [25] are used in the program, the OpenMP standard [26] 
being used for the implementation of parallel computations. The program was tried out on a test problem having an 
analytical solution. 

 

 

 

FIGURE 1. The solution domain V  FIGURE 2. The window of the program for cornea SSS 
calculation 

CONCLUSION 

A procedure for solving an elastostatics problem in the axisymmetric statement has been developed. As applied 
to ophthalmological problems, the results of the study will allow the stress-strain state of the human cornea to be 
studied at specified geometrical and mechanical parameters. In our further research we plan to compare the 
calculation results with the available clinical evidence and to develop prediction techniques. 
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