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A B S T R A C T

The paper deals with theoretical study of effect of ferrogels uniaxial elongation on magnetic susceptibilities of
these composite materials. We have considered the systems with magnetically soft ellipsoidal and spherical
particles. The results show that elongation of the composites with the ellipsoidal particles enhances the sus-
ceptibility in the direction of the elongation, whereas the deformation of ferrogels with the spherical particles
decreases the susceptibility when the particles concentration is small enough and increases it when the con-
centration exceeds some threshold magnitude.

1. Introduction

Magnetic gels and elastomers present new kind of composite ma-
terials, consisting of fine (nano- or micronsized) magnetic particles
embedded into polymer matrix. Combination of rich set of physical and
mechanical properties of polymer and magnetic materials attracts
considerable interest to these systems and to their usage in various
industrial and bio-medical applications [1–7]. In part, magnetic gels are
used for address drug delivery; for industrial and biological sensors
[8–14]; for construction of soft actuators and artificial muscles [2,15];
for cancer therapy, regenerative medicine and tissue engineering
[16–24].

From the viewpoint of biomedical applications, magnetic hydrogels
are very promising materials due to their biocompatibility and ability to
mimic some cellular functions [25]. One of the remarkable properties of
these systems is an opportunity to change, under the action of an ex-
ternal magnetic field, their microstructure, magnetic, mechanical and
other macroscopic properties, size and shape. This gives a possibility to
control, with the help of the field, mechanic behavior, transport and
electrical processes in these systems. In its turn, this ability presents
significant advantage for biosensoric and other high-tech applications
[8,9,20,23,25–27].

On the other hand, one can expect the inverse effect of macroscopic
deformation of the composites on their magnetic properties. This effect
is interesting from the viewpoint of development of technologies of
artificial muscles and actuators, sensors, magnetocontrolled scaffolds
for growth and engineering of biological tissues. It should be noted that

the similar effect of inverse relationship between gel longitudinal de-
formation and its electrical potential has been recently discovered and
studied in refs. [28,29].

In this work we present results of theoretical study of effect of a
ferrogel uniaxial elongation on its magnetic susceptibility. The systems
with magnetically soft ellipsoidal and spherical particles are con-
sidered. In order to avoid intuitive and heuristic theoretical construc-
tion, we consider the systems with small concentrations of the particles.
This allows us to develop mathematically regular approaches, which
can be used as a background for theoretical study of more concentrated
materials.

We believe that the discussed mechanomagnetic effect have a high
potential for the development of technologies in the area of artificial
muscles, actuators, sensors, magnetocontrolled scaffolds and other
high-tech applications of magnetic gel.

2. Ellipsoidal magnetically soft particles

Let us consider a ferrogel sample, consisting of non Brownian
magnetic ellipsoidal particles chaotically (gas-like) distributed in a
polymer matrix. Physically this means that the gel was curried without
action of an external field. To avoid problems connected with de-
magnetizing field, we suppose that the sample is highly elongated,
magnetic field H is aligned along its major axis; the elongation takes
place in the same direction. This situation is illustrated in Fig. 1.

Our goal is to estimate effect of the small elongation on the initial
magnetic susceptibility χ of the gel. The generalization to the non linear
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magnetization of the particles is not difficult, but leads to cumbersome
calculations and final results. We suppose the strong coupling of the
particles with the polymer matrix and the non slipping condition on the
particles surface.

The sketch of the particle is presented in Fig. 2.
By definition, the macroscopic magnetization Mc of the composite,

containing the particles, can be presented as:

= < >M φ Mc in z, (1)

Here φ is volume concentration of the particles, Min is magnetization
inside the particle, Min z, is component ofMin in z direction, i.e. along the
applied field H; brackets mean statistical averaging over all orientations
of the particle axis.

The linear, with respect to the field H, magnetization Min in the
particle can be determined by using the classical results of the theory of
polarization of dielectric ellipsoids [30]. After simple transformations,
the component Min z, can be calculated as:
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Here χp is initial susceptibility of the particle material, angle θ is shown
in Fig. 2, N‖ and ⊥N are the components of the particle demagnetizing
factor along and perpendicular to the main axis of the ellipsoid re-
spectively.

The explicit form of the demagnetizing factor is [30]:
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Here ξ is aspect ratio of the ellipsoid (ratio of the ellipsoid axis of
symmetry to its diameter).

Let u be a vector of the macroscopic displacement in the composite.
The uniaxial elongation of an incompressible sample corresponds to the
following relations:
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Here ε is relative elongation of the sample, which is supposed small
( ≪ε 1).

We will denote initial, before the sample elongation, value of the
angle θ of a given particle as θ .0 Since the elongation ε is supposed
small, the difference = −δθ θ θ0 also must be small. By using

= +θ θ δθ0 in Eq. (2), in the linear approximation with respect to δθ we
get:
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In order to determine the deviation angle, we will use the results
[31,32] of hydromechanics of suspension of elongated particles, as well
as the mathematical identity of the linear Navier-Stokes equation and
the Lame equation of the small deformations of elastic media.

Equations [31,32] of dynamics of a non Brownian magnetizable
particle, suspended in a Newtonian liquid, can be presented as:
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Here ε ̇ is the rate of elongation of the suspension flow, η is viscosity
of the current fluid, μ0 is the vacuum magnetic permeability. These
equations, in the inertialess approximation, correspond to the balance
between the hydrodynamic and magnetic torques, acting on the par-
ticle.

To get the equations for the particle turn in an elastic medium, we
must replace the elongation rate ε ̇ to the static elongation ε; the visc-
osity η to the matrix shear modulus G; the derivates dθ

dt
to the deviation

angle δθ. In the linear approximation with respect to ε, one can get:
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4

sin2 0 (5)

The mean magnetization of a particle can be calculated as:

< > = < > + < >M M δM ,in z in z in z, , 0 , (6)

∫<⋯ > = ⋯ θ dθ1
2

sin
π

0 0 0

Here brackets mean averaging over all initial orientations of the par-
ticles.

Substituting Eqs. (2), (4) and (5) into (6), we calculate the average
magnetic moment of the particle:

< > = + ⊥M χ H κ κ1
3

( )in z
p

, 0 ‖
(7)

< > = − ⊥δM λχ H κ κ ε2
5

( )in z p, ‖

Combining Eqs. (1) and (7), one gets:
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Fig. 1. Illustration of the sample; u is the mean (measurable) displacement.

Fig. 2. Sketch of the ellipsoidal particle deviated from the field H.
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Some results of calculations of the coefficient Q as a function of the
aspect ratio ξ are shown in Fig. 3.

The coefficient Q is positive for all magnitudes of the aspect ratio ξ
Therefore elongation of the sample leads to increase of the composite
magnetic susceptibility.

3. Spherical magnetizable particles

In the case of the spherical particles (ξ=1, = ⊥κ κ‖ ) the approx-
imation (8) of the non interacting inclusions gives =δχ 0. Thus, to
determine the mechanomagentic effect in the composite with magne-
tizable spheres, the interparticle interactions must be taken into ac-
count.

Magnetic susceptibility χ of a composite with the spherical inclu-
sions can be calculated from the general relation [30,33]

= < >χH χ ϕ Hp in (9)

Here H again is the mean (Maxwell) field inside the sample, Hin is the
field inside an arbitrary particle, the brackets<…>mean averaging
over all physically possible positions of other particles.

The main problem of a theory of composite materials is account of
the cooperative interaction between many particles. No general results
have been obtained here. However in the case of single non interacting
particles this problem can be solved strictly [30,33,34]. For the sphe-
rical particles with high susceptibility ≫χ 1p the result reads:

≈H H
χ

3
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p

0
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The superscript 0 denotes the approximation of the non interacting
particles.

In order to take the interparticle interaction by using as mathema-
tically strict results as possible, we will restrict ourselves by the well-
known pair approximation, i.e. will take into account interaction only
between two particles, ignoring effects of any third one. The particles
are illustrated in Fig. 4.

Magnetic field, induced by a particle inside the other one (say, by
the particle number 2 inside the particle number 1 in Fig. 4) can be

estimated in the simplest dipole-dipole approximation. This approx-
imation is quite accurate when the distance r between the particles
centers significantly exceeds diameter of the particle, however it leads
to serious mistakes at the particles close disposition [35,36].

To determine the induced field, we will use here the results of [36],
where energy of the multidipole magnetic interaction between two
particles has been estimated on the basis of analytical extrapolation of
results of numerical calculations. In the case ≫χ 1p , the result of [36]
reads:
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Here W is total energy of two linearly magnetizable particles placed
in the field H; ρ= r/a; a is the particle radius, parameters ak…dk are
tabulated in [36]; θ is angle between the radius vector r, linking the
particles, and the field H (see Fig. 4). The first term in the square
brackets of (11) presents the energy of interaction of two isolated
particles with the field H; the second one, in the extrapolation of [36],
corresponds to the multipole interaction between these particles. For
ρ≫ 1 the second term in (11) coincides with the energy of the dipole-
dipole interaction.

The needed z-component of magnetization Min inside each of the
particles can be calculated from the general thermodynamic relation
between a material magnetization and its energy in an external field
(see, for example, [30]). Taking into account thatW is energy of the two
particle cluster, by using Eq. (11), one gets:
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Taking into account that =M χ Hin z p in, , by using Eq. (9) one comes to
the relation:

=
< >
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M

H
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(13)

In order to determine the magnetization < >Min z, in (13), one must
average Eq. (12) over radius-vector r of all physically possible positions
of the second particle, shown in Fig. 4.

For simplification of the further consideration, we will present the
magnetization as:
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Here Min z,
0 is magnetization of the single particle, Minz

' is a part o the
magnetization induced by the second particle inside the first one.

Let p(r) be the density of probability of the given relative disposition
of the particle, normalized as:

p→ 1, at r→∞.
By using standard considerations of statistical mechanics (see, for

example, [37]) one can present the mean magnetization of the particle
as:

∫< > = + r r rM M
φ
v

M p d( ) ( )in z in z in z, ,
0 '

, (15)

Combining Eqs. (15) and (13), one determines the susceptibility χ of
the composite.

Let us write down the distribution function p as:

= +p p δp0 (16)

The function p0 corresponds to the initial, non elongated state of the
composite, δp reflects effect of the sample elongation on the particles
relative disposition.

By using the results of [38], we come to the following equation with

Fig. 3. The factor Q vs. the particle aspect ratio ξ Dashed and solid lines =χ 10p

and 100 respectively.

Fig. 4. Cluster of two interacting particles. Explanations are in the text.
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respect to δp

= − = − + ∇w w wδp div p p div p( ) ( ( · ) )0 0 0 (17)

Here w is the vector of displacement of the second particle with
respect to the first one.

We will write down p0 in the form of the pair distribution function
the gas of hard spheres [37]:
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In order to determine the vector w, we will use the results of [39] of
hydromechanics of suspensions of hard spheres in Newtonian liquids as
well as the similarity between equation of the liquid flow and equation
of the Hook deformations of elastic media. By using the spherical co-
ordinate system, with the radius-vector r and the polar angle θ (see
Fig. 4), and the results of [39] for the uniaxial elongation flow, we come
to the following relation
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Here wr is the radial component of the vector w; A and B are
functions of the distances r between the particles centers, introduced
and tabulated in [39].

By using (13) and (15), (16), after simple transformations, one gets:
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Combining Eqs. (13) and (17)–(20) we calculate the term < ′ >δ Min z,
and, therefore, the change δχ of the sample susceptibility.

By using the table of numerical values of the functions A and B,
given in [39], we have estimated the integral over r in Eq. (20) in the
form of the trapeze approximation of the Riemann sum. The integral
over the angle θ in (20) is calculated analytically.

After these transformations, the following relation for the composite
susceptibility has been obtained:

≈ +χ φ δχ3 (21)

= − −δχ εφ φ12
5

(1.3 2.8 )2

The term φ3 in (21) is the susceptibility of the non deformed com-
posite. For simplicity we have omitted here the term, proportional to
φ2. That is acceptable for the practical use when the concentration φ is
in the frames of 10–15%. The term δχ is the change of the composite
susceptibility because of its elongation. This result demonstrates that
the term δχ is negative (i.e. effective susceptibility χ decreases while
the sample elongation) if the particles concentration φ is small enough;
in contrast, it increases when the concentration exceeds some threshold
magnitudeφc , estimated as ≈φ 0.45c . The physical reason of this change
of the sign of δχ is appearance of the short ranged order of the particles
spatial disposition. One needs to note that the term − φ1.3 2.8 in (21) is
determined by the used method of numerical calculation of the integral
over r in (20). It can be précised if the explicit forms of the functions
A r( ) and B r( ) are known.

4. Conclusion

We present results of theoretical study of effect of ferrogels elon-
gation on their effective magnetic susceptibility. In order to get math-
ematically regular results, free from any intuitive and heuristic con-
structions, we have considered the systems with low concentration of
the particles. Our results show that susceptibility of the composites with
non spherical (ellipsoidal) inclusions enhances at the sample elonga-
tion. In the case of the systems with spherical particles, the mechan-
omagnetic effect appears because of change, at the macroscopic de-
formation, of the mutual disposition of the magnetically interacting
particles. The susceptibility decreases, after the sample elongation, if
the concentration of the particles is low enough and increases when the
concentration exceeds some threshold magnitude.

For mathematical simplicity and transparence of the physical re-
sults, we have considered the situation, when the applied field H is
parallel to the axis of the sample elongation. The developed approach,
without serious modifications, allows studying of the mechanomagnetic
effect at the arbitrary orientations of the field.

We believe that the present mathematically regular results, obtained
in the asymptotic of low concentration of the particles, can be a robust
background for development of models of this effect in the more con-
centrated magnetic gels. The studied mechanomagnetic effect can be
promising for development of technologies of artificial muscles, ac-
tuators, sensors, magnetocontrolled scaffolds and tissue engineering

Coming back to possible biomedical applications, we would like to
mention recent strong request for multifunctional biosensor systems
where soft matters play different roles. For example, it was shown that
ferrogel thin layer can be a good basis for enhanced cells adhesion [25].
We can therefore propose hypothetical situation for low invasive sur-
gery with location of ferrogel implant sample carrying certain amount
of cells for in-situ tissue regeneration. Application of external magnetic
field of controlled strength can be useful for the implant size adjustment
and this adjustment can be controlled by highly sensitive to the effec-
tive magnetic susceptibility magnetic field detector like giant magne-
toimpedance based sensor [40].
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