- 10. Panossian A. The Role of Adaptogens in Prophylaxis and Treatment of Viral Respiratory Infections / A. Panossian, T. Brendler // Pharmaceuticals (Basel). 2020. № 13(9). P. 236.
- 11. Sztretye M. Astaxanthin: A Potential Mitochondrial Targeted Antioxidant Treatment in Diseases and with Aging / M. Sztretye, B. Dienes, M. Gönczi, et al. // Oxidative Medicine and Cellular Longevity. 2019. P. 1-14.
- 12. Tandon N. Safety and clinical effectiveness of Withania Somnifera (Linn.) Dunal root in human ailments / N. Tandon, S.S. Yadav // The Journal of Ethnopharmacology. 2020. № 255. P. 1-13.

УДК 616-092

Дёмин М.Д., Попугайло М.В. РОЛЬ ГАСТРОМУКОПРОТЕИНА В МЕТАБОЛИЗМЕ ВИТАМИНА В12

Кафедра патологической физиологии Уральский государственный медицинский университет Екатеринбург, Российская Федерация

Demin M.D., Popugaylo M.V. THE ROLE OF GASTROMUCOPROTEIN IN VITAMIN B12 METABOLISM

Department of Pathological Physiology Ural State Medical University Yekaterinburg, Russian Federation

E-mail: mddemin00@gmail.com

Аннотация. В статье представлен обзор литературы о механизмах адсорбции и всасывания витамина B12, роли гастромукопротеина, включая патофизиологические изменения при дефекте его рецептора.

Annotation. The article presents a review of the literature on the mechanisms of adsorption vitamin B12, the role of gastromucoprotein including pathophysiological changes in defect of the intrinsic factor receptor.

Ключевые слова: гастромукопротеин, кобаламин, кубилин, амнион, Синдром Имерслунд-Гресбека.

Key words: gastromucoprotein, cobalamin, cubilin, amnionless, Imerslund-Grasbeck syndrome.

Введение

Гастромукопротеин (внутренний фактор Касла) — термолабильный гликопротеин, который вырабатывается париетальными клетками фундального отдела желудка, и играет важнейшую роль в метаболизме витамина В12 [1].

После открытия Уильямом Перри Мерфи и Джорджем Майнотом в 1926 году антианемического фактора (в дальнейшем названного витамином В12) врачебное сообщество существенно продвинулось в лечении болезни Аддисона-Бирмера (пернициозной анемии), до этого заканчивающейся смертью пациентов почти в 100% случаев. Но вопросы о механизмах поступления витамина В12 в организм человека из пищи достаточно долго оставались открытыми. Исследованиями в этой области занялся врач Уильям Босуворт Касл. На основании результатов обширных экспериментальных исследований он в 1930 г. предложил схему, согласно которой антианемический фактор после попадания в организм с пищей депонируется печенью и используется красным костным мозгом для обеспечения эритропоэза. Но так как у пациентов с болезнью Аддисона-Бирмера введение пищевого антианемического фактора не давало желаемого результата, Уильям Б. Касл предположил, что в организме человека должен существовать так называемый «внутренний фактор», который в комплексе с антианемическим или «внешним» фактором должен позволить организму поддерживать нормальный эритропоэз [2].

Блестящее предположение Уильяма Б. Касла, смогли подтвердить только в 1952 году. Джордж Б. Ежи Гласс выделил из желудочного сока сложный белок – гастромукопротеин, который мог образовывать комплекс с витамином В12 и способствовал его всасыванию, выступая в роли внутреннего фактора [2].

Современные исследователи в этой области существенно продвинулись в понимании механизмов всасывания витамина В12 в кишечнике. Однако сведения об этом представлены в основном в зарубежной научной литературе, а в отечественной научной и учебной литературе изложены в недостаточном объеме. Устранению этого недостатка в какой-то мере посвящена данная работа.

Цель исследования — на основании изучения зарубежных литературных источников представить современный взгляд на молекулярные механизмы всасывания витамина B12 в кишечнике, на роль гастромукопротеина в этом процессе, а также описать молекулярные основы патологии этих процессов.

Материалы и методы исследования

Проведен анализ научных статей по данной теме, опубликованных в зарубежных журналах. Обобщение и систематизация полученной информации позволили сформировать данный литературный обзор. Поиск осуществлялся на базе поисковых ресурсов PubMed, MedLine, Cochrane, GoogleScholar.

Результаты исследования и их обсуждение

Современные взгляды на механизмы поступления, переваривания и всасывания витамина В12 можно представить следующим образом.

Витамин В12 (кобаламин, внешний фактор Касла) — это комплексное металлоорганическое соединение, в состав которого входит атом кобальта. Это вещество незаменимо для нормального функционирования организма человека, его суточная потребность составляет 2-3 мкг [3].

Кобаламин поступает в организм с пищей преимущественно животного происхождения. В желудке он высвобождается из комплекса с белками пищи под действием пепсина и образует комплекс с кобалофилином — быстрым связывающим белком слюны (R-белком). В двенадцатиперстной кишке R-белок расщепляется панкреатическими протезами. В щелочной среде свободный кобаламин связывается с гастромукопротеином, что делает его устойчивым к действию протеолитических ферментов [4].

Стоит отметить, что гастромукопротеин обладает высокой специфичностью к молекуле кобаламина. Внутренний фактор имеет два сайта связывания: один с кобаламином, а другой для взаимодействия со специфическим рецептором в подвздошной кишке. Молекула кобаламина, как бы остается зажатой между двумя доменами внутреннего фактора [1, 5].

Затем комплекс витамин B12—гастромукопротеин транспортируется в подвздошную кишку. В терминальном отделе витамин B12 подвергается рецептор-опосредованному эндоцитозу в энтероцит, с участием ионов кальция. На апикальный мембране энтероцита экспрессируются рецепторы внутреннего фактора. Этот рецепторный комплекс носит название — кубам (CUBAM — аббревиатура для двух его субъединиц: кубилина и амниона). Кубам присутствует в тонком кишечнике и эпителии проксимальных почечных канальцев, а также на клетках желточного мешка [6].

Кубилин (CUBN) — это мультилигандный мембранный белок, который непосредственно взаимодействует с комплексом гастромукопротеин— кобаламин. Внеклеточные домены кубилина обладают высокой аффинностью к доменам гастромукопротеина [6,7]. Два удаленных домена кубилина охватывают молекулу кобаламина, связывая два домена внутреннего фактора Са2+-зависимым способом.

Амнион (AMN) — это интегральный мембранный белок, дополнительно связывающийся с кубилином, для прочной фиксации комплекса кубилин-кобаламин к клеточной мембране [6,8].

Распознавание внутреннего фактора кубилином позволяет витамину В12 проникнуть в энтероцит путем эндоцитоза вместе с рецептором кубам. Внутри эндосомы комплекс гастромукопротеин–кобаламин высвобождается, а кубам возвращается на апикальную мембрану [4,6].

Затем лизосомальный фермент катепсин L высвобождает молекулу кобаламина из комплекса с гастромукопротеином. Далее витамин B12 соединяется с белком-переносчиком — транскобаломином II и выделяется в кровь. Комплекс транскобаломин II — витамин B12 доставляется в печень, клетки красного костного мозга и желудочно-кишечного тракта, где в последующем образуются коферментные формы витамина: метилкобаламин и 5-дезоксиаденозилкобаламин [4].

Этиология и патогенез дефицита витамина B12 (болезни Аддисона-Бирмера) достаточно хорошо описаны. Показано, что эта патология часто связана со снижением продукции гастромукопротеина. Как правило, указывается, что к этому приводит наследственный дефект выработки гстромукопротеина, наследующийся аутосомно-рецессивно, патология желудка, аутоиммунные процессы, направленные против париетальных клеток желудка или против самого гастромукопротеина, патология кишечника [1]. Открытие рецепторных механизмов всасывания витамина В12 в кишечнике позволило объяснить патогенез редкой формы дефицита витамина В12 - синдрома Имерслунд-Гресбека [9].

Синдром Имерслунд-Гресбека (IGS) — редкое наследственное аутосомнорецессивное заболевание, характеризующееся дефицитом кобаламина из-за повреждения рецептора внутреннего фактора, и в последующем селективного нарушения всасывания в кишечнике. Причиной данного синдрома является мутация в одном из генов: CUBN, кодирующего кубилин и расположенного на 10 хромосоме, или AMN, кодирующего амнион и расположенного на 14 хромосоме [10]. В настоящее время идентифицированы три мутации гена CUBN и две мутации AMN. При этом синдроме в половине случаев развивается умеренная протеинурия без признаков болезни почек. Дефицит кобаламина характеризуется мегалобластической анемией (проявляется в возрасте 1-5 лет), неврологическими нарушениями, пойкилоцитозом, анизоцитозом [9-11].

Выводы

Изучение этиологии и патогенеза болезни Аддисона-Бирмера — выдающаяся страница мировой медицины, которая позволила существенно улучшить лечение некогда смертельного заболевания. Изучение молекулярного взаимодействия гастромукопротеина и витамина В12 позволило углубить наши знания о рецепторных механизмах всасывания кобаламина в кишечнике и их нарушениях. В частности, был выяснен генетический механизм нарушений рецепторного аппарата в развитии синдрома Имерслунд-Гресбека, одного из вариантов наследственной В12-дефицитной анемии.

Список литературы:

- 1. Al-Awami H.M. Physiology, Gastric Intrinsic Factor [Электронный ресурс] / H.M. Al-Awami, A. Raja, M.P.Soos // StatPearls 2021. URL: https://www.ncbi.nlm.nih.gov/books/NBK546655 (дата обращения 17.03.2021).
- 2. Jandl J.H. Biographical Memoir of William B. Castle / J.H. Jandl. Washington D.C.: National Academy of Sciences, 1995. P. 29.
- 3. Smith A.D. Vitamin B12 / A.D. Smith, M.J. Warren, H.Refsum // Advances in Food and Nutrition Research. 2018. Vol. 83. P. 215-279.
- 4. Kozyraki R. Vitamin B12 absorption: mammalian physiology and acquired and inherited disorders / R. Kozyraki, O. Cases // Biochimie. 2013. Vol. 95. №5. P. 1002-1007.
- 5. Fedosov S.N. Physiological and molecular aspects of cobalamin transport // Subcell Biochem. 2012. №56. P.347-367.

- 6. Structural basis for receptor recognition of vitamin-B12–intrinsic factor complexes / C. Andersen, M. Madsen, T. Storm [et al.] // Nature. 2010. №464. P. 445-448.
- 7. Kozyraki R. Cubilin, the Intrinsic Factor-Vitamin B12 Receptor in Development and Disease / R. Kozyraki, O. Cases // Current Medicinal Chemistry. -2020. Vol. 27. No. 19. P. 3123-3150.
- 8. B12 deficiency and impaired expression of amnionless during aging / A. Pannerec, E. Migliavacca, A. De Castro, J. Michaud, S. Karaz, L. Goulet, S. Rezzi, N. Bosco, A. Larbi //Journal of Cachexia, Sarcopenia and Muscle. − 2017. − Vol. 9. − №1. − P. 41-52.
- 9. Krzemien G.Vit. B12 deficiency in children (Imerslund-Gräsbeck syndrome in two pairs of siblings) / G.Krzemien, A.Turczyn, A.Szmigielska, M.Roszkowska-Blaim // Developmental Period Medicine. − 2015. − Vol. 19. − №3. − P. 351-355.
- 10. Elshinawy M. Clinical and molecular characteristics of imerslund-gräsbeck syndrome: First report of a novel Frameshift variant in Exon 11 of AMN gene / M. Elshinawy,H.H. Gao, D.M. Al-Nabhani, K.A.Al-Thihli // The International Journal of Laboratory Hematology. -2021. N = 1. P. 1-7.
- 11. Bargehr C. Cabot rings and other peripheral blood features of Imerslund-Gräsbeck syndrome / C. Bargehr, R.Crazzolara // The British Journal of Haematology. $-2020. \text{Vol}.\ 191. \text{N}_21. \text{P}.\ 11.$

УДК 577.24

Екенин Д.В., Салко В.И., Десятова М.А. РОЛЬ АЦЕТИЛИРОВАНИЯ ГИСТОНОВ В ВОЗРАСТНЫХ НАРУШЕНИЯХ ПАМЯТИ ПРИ БОЛЕЗНИ АЛЬЦГЕЙМЕРА

Кафедра медицинской биологии и генетики Уральский государственный медицинский университет Екатеринбург, Российская Федерация

Ekenin D.V., Salko V.I., Desyatova M.A. ROLE OF HISTONE ACETYTION IN AGE-RELATED MEMORY IMPAIRMENT IN ALZHEIMER'S DISEASE

Department of medical biology and genetics
Ural State Medical University
Ekaterinburg, Russian Federation

E-mail: mardesyatova@yandex.ru

Аннотация. В статье описано влияние ацетилирования гистонов на мозг в целом и на отдельный его участок – гиппокамп и прямая связь ацетилирования стонов с болезнью Альцгеймера.