- 2. Высокая электрическая проводимость растворов Хлорамина-Б указывает на наличие свободных ионов. Противовирусную активность способны проявлять хлорсодержащие анионы основного действующего вещества дезинфектантаза счет высокой окислительной способности.
- 3. Анионы натриевой соли хлорамида бензолсульфокислоты (Хлорамина Б) обладают поверхностно-активными свойствами и способны к мицеллообразованию при объемной концентрации 2,5% и более.
- 4. Раствор Хлорамина-Б является гипотоническим по отношению к клеткам микроорганизмов, что может приводить к лизису липидно-белковой оболочки вируса.

Списки литературы:

- 1. Абрамов А.В. Пандемия covid-19: конец привычного мира? / Багдасарян В.Э., Быков С.О. // Вестник Московского государственного областного университета. -2020. -№2. С. 8-32.
- 2. Воробьев А.А. Медицинская микробиология, вирусология и иммунология / А.А. Воробьев. М: МИА, 2015. 704 с.
- 3. Инструкция по применению Хлорамина-Б [Электронный ресурс]URL: http://vekha.ru/f/khloramin_b_instruktsiya_po_primeneniyu.pdf (дата обращения 18.03.2021)
- 4. Кутырев В.В. Эпидемиологические особенности новой коронавирусной инфекции. / Попова А.Ю., Смоленский В.Ю., Ежлова Е.Б. // Проблемы особо опасных инфекций. 2020. С. 3-5.
- 5. Лапко В. Миксамин эффективная дезинфекция [Электронный ресурс] / Д. Соколов. // Животноводство: электрон. научн. журн. 2013. №5. URL: https://www.elibrary.ru/item.asp?id=20135616 (дата обращения: 04.01.2021)
- 6. Локоткова А.И. Ключевые аспекты дезинфекции в эпидемически неблагоприятный период по коронавирусной инфекции / А.И.Локоткова, Э.Х. Мамкеев, И.А. Булычева, Ф.Н. Сабаева и др. // Школа эпидемиологов: теоретические и прикладные аспекты эпидемиологии. Сборник материалов II Всероссийской научно-практической конференции. 2020. С. 32-34.
- 7. Belouzard S., Millet J.K., Licitra B.N., Whittaker G.R. Mechanisms of coronavirus cell entry mediated by the viral spikeprotein // Viruses. 2012. 4(6):1011–33.

УДК 61:613.2

Мухаметшина К.Е., Васильева Ю.В., Рыжкова И.А. СРАВНИТЕЛЬНЫЙ АНАЛИЗ ПИЩЕВОЙ ЦЕННОСТИ И СОСТАВА ДЕТСКИХ СУХИХ МОЛОЧНЫХ СМЕСЕЙ

Кафедра гигиены и профессиональных болезней Уральский государственный медицинский университет Екатеринбург, Российская Федерация

MukhametshinaK.E., Vasilieva Ju.V., Ryzhkova I.A. COMPARATIVE ANALYSIS OF THE NUTRITIONAL VALUE AND COMPOSITION OF INFANT FORMULA POWDER

Department of Hygiene and Occupational Diseases
Ural state medical university
Yekaterinburg, Russian Federation

E-mail: xuha1801@gmail.com

Аннотация. В статье представлен сравнительный анализ пищевой ценности детских молочных смесей для новорожденных детей в возрасте 0-6 месяцев. В качестве эталона взят химический состав грудного женского молока.

Annotation. The article presents a comparative analysis of the nutritional value of infant formula for newborns aged 0-6 months. The chemical composition of human breast milk was taken as a reference.

Ключевые слова: искусственное вскармливание, детские молочные смеси.

Key words: artificial nutrition, infant formula.

Введение

Естественным и самым физиологичным питанием для ребенка с первых дней жизни является грудное молоко. Грудное молоко имеет уникальный химический состав и пищевую ценность, обеспечивающие потребности новорожденного, содержит антитела, обеспечивающие естественный иммунитет и защиту от инфекционных заболеваний. Несмотря на то, что грудное молоко является идеальным питанием для новорожденных и детей грудного возраста, по оценкам ВОЗ, в мире только около 40% детей в возрасте до 6 месяцев находятся на грудном вскармливании [3, 6].

В связи с необходимостью искусственного вскармливания ребенка, важно, чтобы молочные смеси были адаптированы, то есть максимально приближены по своему составу к грудному молоку, содержали все необходимые питательные вещества в достаточном количестве, были безопасны и обеспечивали полноценную жизнедеятельность ребенка [2, 3, 4].

Соотношение казеина и сывороточного белка в грудном молоке составляет 40:60, в коровьем и козьем молоке, на основе которых чаще всего изготавливают смеси, эти соотношения значительно отличаются в пользу казеина и составляют 80:20, что затрудняет его усвоение и может привести к нарушению пищеварения [2, 4, 5].

Важной составляющей полноценного питания являются жиры, обеспечивающие до 50% энергетической потребности ребенка. Кормление младенцев смесями, в состав которых входит бета-изомер пальмитиновой кислоты (sn-2 положение) способствует улучшению усвоения жира и кальция, способствуют минерализации костной ткани формированию мягкого стула,

облегчают пищеварение. В адаптированных смесях с добавлением пальмового масла, в котором пальмитиновая кислота находится в sn-1- и sn-3-положениях, происходит образования нерастворимых комплексов кальция пальмитата. Это приводит к снижению всасывания кальция и жирных кислот, сопровождается нарушением минерализации скелета, уплотнению стула, запорам и коликам [1, 2]. Полиненасыщенные жирные кислоты являются незаменимым компонентом питательных смесей. Для нормального роста ребенка, развития нервной системы и зрения большую роль играют Омега-6 (линолевая, арахидоновая) и Омега-3 (альфа-линоленовая, докозагексаеновая, эйкозапентаеновая) жирные кислоты, а также их соотношение (омега-6/омега-3 – 9:1-7:1) [3,4,6].

Цель исследования — оценка пищевой ценности и состава детских молочных смесей различных производителей.

Материалы и методы исследования

Нами проведен анализ пищевой ценности и состава адаптированных сухих молочных смесей для здоровых детей в возрасте от 0 до 6 месяцев на основании данных производителя. Для исследования были отобраны популярные марки детских молочных смесей: НАН 1, Нестожен 1, Хумана 1, ХиПП 1, Семпер Беби 1, Нутрилон 1, Фриско 1, Малютка 1, Нутрилак 0-6.

Для анализа взяты следующие показатели пищевой ценности продукта: энергетическая ценность, содержание белков, жиров и углеводов, содержание витаминов, микроэлементов и других биологически активных веществ, содержание полиненасыщенных Омега-3 и Омега-6 жирных кислот. Проанализировано наличие в составе детской смеси пальмового масла, а также соотношения сывороточных белков и казеина. В качестве эталона взят химический состав женского грудного молока [2, 4, 5].

Результаты исследования и их обсуждение

Энергетическая ценность всех исследуемых детских молочных смесей варьирует в диапазоне 65-67 ккал/100мл, что соответствует значению показателя в грудном молоке.

Белок в следующих молочных смесях: НАН 1, Семпер Беби 1, Нутрилон 1, Малютка 1, Нутрилак 0-6, содержится в оптимальном количестве. В смесях Нестожен 1, Хумана 1, ХиПП 1, Фриско 1 количество белка несколько повышено, в сравнение с эталоном. Соотношение казеин/сывороточные белки в детских молочных смесях Нестожен 1, Хумана 1, ХиПП 1, Семпер Беби 1, Нутрилон 1, Малютка 1 соответсвует показателю в грудном молоке 40:60. Смеси НАН 1 и Нутрилак 0-6 - 30:70 и 35:65 соответственно.

Содержание жиров во всех исследуемых детских молочных смесях несколько ниже, чем в грудном молоке. В состав детских молочных смесей входят полиненасыщенные омега-3 и омега-6 жирные кислоты. Линолевая кислота содержится во всех исследуемых молочных смесях в необходимом количестве. Арахидоновая кислота отсутствует в смесях Нестожен 1 и Фриско 1, в остальных исследуемых молочных смесях содержится в меньшем количестве, чем в грудном молоке. Содержание α-линоленовой кислоты в составе детской

молочной смеси Фриско 1 ниже, чем в эталоне, остальные анализируемые молочные смеси — на уровне и выше. Докозагексаеновая кислота отсутствует в детской молочной смеси Фриско 1 и имеется в меньшем количестве, чем в грудном молоке, в Нестожен 1. Оптимальному отношению полиненасыщенных омега-6/ омега-3 жирных кислот соответствуют следующие детские молочные смеси: НАН 1, Нестожен 1, Хумана 1, ХиПП 1, Семпер Беби 1, Нутрилак 0-6. Пальмовое масло входит в состав всех исследуемых детских молочных смесей.

Оптимальную потребность в углеводах обеспечивает смесь Хумана 1, остальные исследуемые детские молочные смеси имеют значение выше, чем в эталоне - грудном молоке. Результаты исследования представлены в таблице (табл. 1).

Таблица 1 Пищевая ценность детских молочных смесей

	1 2 0	HAH 1	Нестожен 1	Хумана	ХиПП 1	Семпер Беби 1	Нутрилон 1	Фриско 1	Малютка 1	Нутр илак 0-6
	молоко	1	1	1	1	Беои 1	1	1	1	0-0
Энергетическая										
ценность, ккал	65-70	67	67	65	67	66	65	65	65	66
Белки, г	0,9-1,3	1,24	1,34	1,6	1,4	1,3	1,3	1,4	1,3	1,3
Казеин/белки										
молочной										
сыворотки	40/60	30/70	40/60	40/60	40/60	40/60	40/60	40/60	40/60	35/65
Жиры, г	3,9-4,5	3,58	3,3	3,2	3,6	3,5	3,4	3,2	3,3	3,4
Линолевая										
кислота, мг	374	580	547	585	700	530	438	481	444	620
α-линоленовая										
кислота, мг	52	60	65	64	80	66	81	45	82	70
Арахидоновая										
кислота, мг	26	7,87	-	6,3	12,6	6,9	11	-	6,4	3,2
Докозагексаеновая										
кислота, мг	5	7,87	3	6,3	8,3	6,9	10	-	6,4	11,5
Соотношение		9:1	8:1	8:1	8:1	7:1	5:1	11:1	5:1	8:1
омега 6: омега 3	9:1-7:1									
Углеводы, г	6,8-7,2	7,45	7,8	7,2	7,3	7,3	7,3	7,7	7,4	7,6

Витаминно-минеральный состав смесей всех детских молочных соответствует составу грудного молока. В молочных смесях Семпер Беби, Нутрилон 1, Фриско 1 и Малютка 1, есть незначительное снижение содержания витамина А, в сравнение с грудным молоком. Витмамин Д содержится в количестве первышающем показатель эталона в 10 и более раз. Витамин Е во всех молочных смесях превышает норму грудного молока практически в 2 раза. Витамины В1 и С также превышают норму грудного молока во всех молочных смесях в 1,5 – 2 раза. Фолиевая кислота во всех молочных смесях превышает содержание в грудном молоке в 2 и более раз. Витамин В12 во всех детских молочных смесях превышает норму грудного молока. Содержание кальция и фосфора в исследуемых детских молочных смесях выше в 1,5-2,5 раза, чем в эталоне. В молочных смесях значительно выше содержание железа в сравнении с грудным молоком. В грудном молоке и в смесях Семпер Беби 1, Фриско 1 содержится одинаковое количество йода, в остальных смесях данный показатель повышается до 14,2 мкг. Результаты анализа витаминно-минерального состава представлены ниже (табл. 2).

Таблица 2 Витаминно-минеральный состав детских молочных смесей

Bittaminito minicpandinani coctad geternix mono indix emecen										
	Грудное молоко	HAH 1	Нестожен 1	Хумана 1	ХиПП 1	Семпер Беби 1	Нутрилон 1	Фриско 1	Малютка 1	Нут рил ак 0-6
Витамин А, экв. ретинола, мкг	60	68,42	78,7	64	60	50	54	52	54	62
Витамин Д,	0,1	0,97	0,93	1	0,9	1,2	1,6	1,2	1,2	1,2
Витамин Е, мг	0,43	1,16	0,93	1	0,8	0, 92	1,1	0,78	1,1	1,2
Витамин С, мг	6,2	9,68	13,3	11	9	11	9,2	7,8	9,2	9
Витамин В1, мг	0,02	0,07	0,07	0,06	0,06	0,05	0,05	0,05	0,05	0,05
Фолиевая кислота, мкг	5	9,68	10	11	9,5	7,2	13	12	12	11
Витамин В12, мкг	0,1	0,18	0,17	0,16	0,2	0,23	0,19	0,16	0,17	0,22
Кальций, мг	25,5	42,6	52,7	59	56	44	55	52	61	55
Фосфор, мг	14	25,17	32	32	31	26	31	29	34	30
Железо, мг	0,04	0,63	0,67	0,6	0,6	0,4	0,53	0,7	1	0,7
Йод, мкг	2-10	14,2	14	14	10,9	10	12	10	12	12

В состав всех смесей также входит холин, таурин, л-карнитин и инозит.

Выволы:

- 1. Энергетическая ценность анализируемых смесей соответствует энергетической ценности грудного молока.
- 2. Казеин и сывороточные белки в составе всех исследуемых молочных смесей в оптимальном соотношении.
- 3. Полиненасыщенные Омега-3 и Омега-6 жирные кислоты входят в состав большинства смесей, в оптимальном соотношении.
- 4. Пальмовое масло входит в состав всех исследуемых детских молочных смесей. Среди представленных смесей содержание бета-пальмитиновой кислоты в составе нет.
- 5. Витаминно-минеральный состав всех детских молочных смесей соответствует составу грудного молока

Список литературы:

- 1. Верткин А.Л. Пальмовое масло в составе заменителей грудного молока обзор клинических исследований / А.Л. Верткин, Е.А. Прохорович // Медицинский совет. 2013. № 8. С. 110-113.
- 2. Комарова О.Н. Перспективы применения смеси на основе козьего молока с бета-пальмитиновой кислотой у детей первого года жизни / О.Н Комарова, А.И. Хавкин // Медицинский совет. 2017. №19. С. 34-39.
- 3. Меренкова С.П. Физиологическое значение нутриентного состава адаптированных молочных смесей / С.П. Меренкова // Вестник ЮУрГУ. 2013. Т.1. №1. С. 56-62.
- 4. Неонатология: учеб. пособие для студ. вузов / под ред. Н. П. Шабалов. М.: ГЭОТАР-Медиа, 2016. 704 с.
- 5. Нетребенко О.К., Постнатальное программирование: белок в питании грудных детей / О.К. Нетребенко // Журнал им. Г.Н. Сперанского. 2015. Т.94. №1. С. 113-121.
- 6. Программа оптимизации вскармливания детей первого года жизни в Российской Федерации: методические рекомендации / ФГАУ «НМИЦ здоровья детей» Минздрава России. —М.: б. и., 2019. 112 с.

УДК 613.96

Нахратова С.А., Кулиева М.А. ГИГИЕНИЧЕСКАЯ ХАРАКТЕРИСТИКА И ОЦЕНКА ОРГАНИЗАЦИИ

УЧЕБНОГО ПРОЦЕССА ХОРЕОГРАФИЧЕСКОЙ НАПРАВЛЕННОСТИ В ДЕТСКОЙ ФИЛАРМОНИИ

Кафедра гигиены и экологии Уральский государственный медицинский университет Екатеринбург, Российская Федерация

Nakhratova S.A., Kulieva M.A. HYGIENIC CHARACTERISTICS AND ASSESSMENT OF THE ORGANIZATION OF THE TEACHING PROCESS OF A CHOREOGRAPHIC DIRECTION IN CHILDREN'S PHILHARMONY

Department of hygiene and ecology Ural State Medical University Yekaterinburg, Russian Federation

E-mail: sv-nahratova@mail.ru

Аннотация. В данной статье рассмотрены результаты проведенной оценки санитарно-гигиенического состояния и организации учебного процесса хореографической направленности в Свердловской государственной детской филармонии. Было установлено соответствие санитарно-гигиенических требований по размещению, набору помещений, внутренней отделки, световому