рекомендовала фармацевтическим компаниям снижать цены в добровольном порядке до минимальных значений в референтных для России странах. В итоге наблюдалось снижение зарегистрированных максимальных отпускных цен производителей на 1260 лекарственных препаратов [3].

В 2019 году были приняты законодательные и нормативные акты, в Министерству соответствии с которыми, здравоохранения Федерации совместно с антимонопольным ведомством было необходимо до конца 2020 года пересмотреть все зарегистрированные с 2010 года предельные цены производителей. Кроме того, нормативными отпускные лекарственных устанавливается постоянная обязанность производителей препаратов снижать зарегистрированные цены в России при снижении цен в референтных странах в иностранной валюте.

Выводы

В настоящий период времени ведётся серьёзная работа по пересмотру цен на лекарственные препараты. На первом этапе пересматриваются цены на оригинальные препараты фармацевтических производителей: сравниваются заявленные цены с ценами в двенадцати референтных странах и, в случае необходимости, рекомендуется снизить их до уровня цен в референтных странах. Затем применяются понижающие коэффициенты и рассчитываются цены на дженерики без заявлений фармацевтических производителей в рамках полномочий Федеральной антимонопольной службы России.

Список литературы:

- 1. Грентикова И.Г. Маркетинговый анализ предпочтений покупателей в розничном сегменте фармацевтического бизнеса старопромышленного региона / И.Г. Грентикова // Вестник Балтийского федерального университета им. И. Канта. Серия: Гуманитарные и общественные науки. − 2019. − № 3. − С. 49-60.
- 2. Фетисова Д.В. Оценка предпочтений населения в аптечном сегменте фармацевтического бизнеса / Д.В. Фетисова, И.Г. Грентикова // В сборнике: Инновационный конвент «Кузбасс: образование, наука, инновации». Материалы Инновационного конвента. Департамент молодежной политики и спорта Кемеровской области. 2019. С. 363-365.
- 3. Шаравская Н. Переход на «индикативные» параметры позволил сформировать прозрачную и объективную систему регистрации цен на препараты для всех участников фармрынка [Электронный ресурс] URL: https://fas.gov.ru/news/30180 (дата обращения: 15.02.2021).

УДК 615.272.3

Ильиных М.Г., Бахтин В.М., Изможерова Н.В. МЕХАНИЗМЫ ДЕЙСТВИЯ МЕТФОРМИНА

Кафедра фармакологии и клинической фармакологии Уральский государственный медицинский университет Екатеринбург, Российская Федерация

Ilinykh M.G., Bakhtin V.M., Izmozherova N.V. MECHANISMS OF METFORMIN ACTION

Chair of Pharmacology and Clinical Pharmacology
Ural State Medical University
Yekaterinburg, the Russian Federation

Email: marinailinykh@mail.ru

Аннотация. В статье рассматриваются современные гипотезы о механизмах действия метформина. Показано, что метформин влияет не только на углеводный обмен, но также и на многие другие функции клеток.

Annotation. The article discusses modern hypotheses regarding the mechanisms of metformin action. Metformin has been shown to affect not only carbohydrate metabolism, but also many other cell functions.

Ключевые слова: метформин, гемопротеины, механизм действия, сахарный диабет, противораковый эффект, антивозрастной эффект.

Key words: metformin, hemoprotein, mechanisms, action, diabetes, anti-cancer effect, anti-aging effect.

Введение

Гипогликемические свойства метформина были известны с 20-х годов XX века, но только в 1995 году он был введен в США как препарат для лечения сахарного диабета 2 типа (СД2) [1]. Несмотря на широкое применение метформина (1,1-диметилбигуанида) в настоящее время в качестве препарата первой линии терапии сахарного диабета 2 типа [3], всё ещё достоверно не известен точный молекулярный механизм его действия. Некоторые авторы [5] предполагают, что нам известны лишь непрямые опосредованные пути воздействия метформина на клетки-мишени, а главный доминирующий путь, объединяющий все остальные, остаётся неясным.

В данной статье представлен обзор последних исследований, касающихся некоторых уже известных механизмов действия метформина и следующих за ними эффектов. Существуют предположения, что метформин имеет широкий потенциал действия не только на уровень глюкозы, но также на функции гема, продолжительность жизни клеток и опухолевый рост [5].

Цели исследования — проанализировать и обобщить известные гипогликемические и другие механизмы действия метформина.

Результаты и обсуждение

Метформин включён в клинические рекомендации для лечения сахарного диабета 2 типа (СД2) благодаря доказанной способности улучшать контроль гликемии и снижать смертность от сердечно-сосудистых заболеваний без риска гипогликемии, увеличения массы тела и с меньшим риском развития лактатацидоза, в отличие от других препаратов [3].

Механизмы гипогликемии

С биохимической точки зрения метформин наиболее эффективен внутриклеточно, нежели внеклеточно, так как его период полувыведения из клеток, в т. ч. гепатоцитов и эритроцитов, в 8 раз больше, чем из плазмы [5]. Эти наблюдения позволяют предположить, что внутриклеточные мишени, связывающие метформин, многочисленны.

Считается, что метформин оказывает своё противодиабетическое действие за счёт ингибирования глюконеогенеза в печени путём воздействия на две молекулярные мишени внутри митохондрий гепатоцитов (рис.1).

- 1. Метформин частично подавляет І комплекс дыхательной цепи, что приводит к увеличению соотношения концентраций аденозинмоно- и дифосфата (АМФ/АТФ) и активации АМФ-активируемой протеинкиназы (АМФК), которая оказывает множество эффектов на энергетический метаболизм, включая подавление экспрессии генов глюконеогенеза. Считается также, что увеличение концентрации АМФ и уменьшение концентрации циклического АМФ (цАМФ) активность аденилатциклазы, важного медиатора ингибирует дезактивирует протеинкиназу глюкагона, что, свою очередь, дефосфорилирует транскрипционный фактор CREB (cAMP-response elementчто, в конечном итоге, приводит к ингибированию binding protein), глюконеогенеза [7].
- 2. Блокирует митохондриальную глицерин-3-фосфатдегидрогеназу, играющую ключевую роль в глицерофосфатном челночном механизме, что приводит к дефициту окисленной формы никотинамидадениндинуклеотида (кофермента $HAД^+$) и подавлению глюконеогенных реакций, включая превращение лактата в пируват [7].

Биодоступность большинства лекарств определяется абсорбцией метаболизмом в желудочно-кишечном тракте, а также метаболизмом в печени. Поскольку метформин не претерпевает печёночный метаболизм, биодоступность определяется в первую очередь кишечной абсорбцией. Фармакокинетические исследования [6] показали, ЧТО большая метформина всасывается после приёма более низких доз, чем высоких. Период полувыведения перорального метформина из крови почками составляет всего 3-4 часа. Другие исследования [2] показали, что метформин остается в желудочнокишечном тракте в течение значительно более длительного времени и влияет на обработку глюкозы толстой кишке, приводя К накоплению неметаболизируемого производного фтордезоксиглюкозы [7]. Механизм данного эффекта до конца пока не известен.

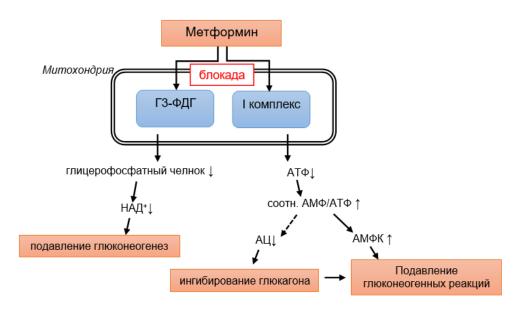


Рис.1. Внутриклеточные мишени метформина и механизмы ингибирования глюконеогенеза (ГЗ-ФДГ – митохондриальная глицерин-3-фосфатдегидрогеназа; НАД+ – никотиамидадениндинуклеотид; АТФ – аденозинтрифосфат; АМФ – аденозинтрифосфат; АЦ – аденилатциклаза; АМФК – АМФК-зависимая протеинкиназа)

GLUT-2 — переносчик глюкозы, находящийся у базолатеральной мембраны энтероцита в тонкой кишке при низкой концентрации глюкозы и переходящий в щеточную каёмку при высоких ее концентрациях [4]. Роль GLUT-2 в печени состоит в том, чтобы поглощать глюкозу после еды и выделять глюкозу в кровь во время голодания. Считается, что метформин может снижать его функцию или экспрессию, что приводит к снижению выделения глюкозы печенью. После большого мета-анализа почти 8000 пациентов с СД2 появились сведения, что некоторые генетически опосредованные варианты GLUT-2 более чувствительны к метформину и лучше реагируют на терапию [6].

GLUT-5 – переносчик фруктозы, который постоянно находится в щеточной каёмке энтероцитов [4]. Проведено исследование [8] действия некоторых веществ, включая метформин, на экспрессию генов транспортеров глюкозы и фруктозы. В первой группе крыс диета с высоким содержанием фруктозы повышала уровень насыщенных свободных жирных кислот, тем самым снижая экспрессию GLUT-5, и ингибировала окисление жиров, что приводило к быстрому увеличению массы тела. Во второй группе в диету с высоким содержанием фруктозы ввели также приём метформина, что привело к повышенному содержанию моно- и полиненасыщенных свободных жирных кислот и увеличению экспрессии GLUT-5. Таким образом, метформин метаболической предотвращает индуцированной фруктозой развитие дисфункции и, как следствие, ожирение.

Кроме этого, существуют исследования [10], которые показали прямое влияние метформина на функцию и рост микробиома в кишечной среде: метформин стимулирует рост и увеличение численности *Akkermansia muciniphila*

и *Bifidobacterium adolescentis*, что связанно с усилением синтеза их нуклеиновых кислот, и влиянием на бактериальный транспорт металлопротеинов и синтез комплексов, ответственных за транспорт разных металлов. Вероятнее всего, лечение метформином влияет на экспрессию генов микробиома, связанных с метаболизмом короткоцепочечных жирных кислот [7].

Механизмы развития других эффектов метформина

Существуют предположения о том, что метформин замедляет старение клеток, один из механизмов которого — изменение их ответа на стресс путём регуляции «биологических часов» под влиянием каскада киназ семейства ТОR (англ. target of rapamycin — мишень рапамицина). Ингибирование ТОR-каскада переключает программы развития и роста на программу поддержания жизнеспособности в условиях стресса, что позволяет лучше справляться со спонтанным внутриклеточным стрессом и жить дольше. Активация АМФК под действием метформина приводит к косвенному ингибированию киназы mTOR. Таким образом, показано, что метформин, как активатор АМФК и аутофагии, защищающей клеточные органеллы, обладает супрессивным действием на механизм старения.

Известно также о двойном противораковом механизме метформина: косвенно через активацию АМФК, в том числе, снижая поглощение глюкозы раковыми клетками, и напрямую, подобно антифолатным химиотерапевтическим средствам, повреждая метаболизм фолатов в опухолевых клетках [9].

В ходе большого исследования [5], было выяснено, что метформин образует комплексы с широким спектром ионов переходных металлов, таких как Cu^{2+} , Co^{2+} , Ni^{2+} и Zn^{2+} (и, предположительно, с Fe^{2+} и Mg^{2+}), за счёт чего напрямую взаимодействует с гемопротеинами (цитохром С и P450, миоглобин, гемоглобин и т.д.), ослабляя окисление в них гема. Так как эритроциты используют глюкозу в качестве источника энергии, они могут быть мишенями метформина, который защищает гемопротеины и способствует поддержанию в них нормальных клеточных функций. Возможно, этот механизм действия метформина потенциально очень важен.

Хроническое воспаление, связанное с ожирением, действует на адипоциты и гепатоциты и является одним из основных факторов инсулинорезистентности и нарушений гликолипидного гомеостаз при метаболическом синдроме и СД2. Новые данные [7] показали, что метформин способен уменьшать метавоспаление, посредством активации АМФК ингибируя экспрессию провоспалительных цитокинов (ИЛ-6 и ФНО) в макрофагах и моноцитах. Это также может способствовать уменьшению воспаления сосудистой стенки при атеросклерозе [7].

Выводы:

1. Механизмы влияния метформина на углеводный обмен включают в себя ингибирование I комплекса дыхательной цепи, глицерофосфатного челнока,

активацию АМФК, ингибирование процессов глюконеогенеза, а также действие на трансмембранный перенос глюкозы в печени и кишечнике.

2. Метформин обладает большим количеством плейотропных эффектов, включая замедление клеточного старения, противоопухолевое действие, защиту гем-содержащих белков от окисления, а также ингибирование воспалительных процессов.

Список литературы:

- 1. Bailey C.J. Metformin: historical overview / C.J. Bailey // Diabetologia. 2017. –Vol. 60. $\mathbb{N} 9$. P. 1566–1576.
- 2. Czyzyk A. Effect of biguanides on intestinal absorption of glucose / A. Czyzyk, J. Tawecki, J. Sadowski, I. Ponikowska, Z. Szczepanik // Diabetes. 1968. Vol. 17. №8. P. 492-498.
- 3. Foretz M. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus / M. Foretz, B. Guigas, B. Viollet // Nat Rev Endocrinol. -2019. Vol. 15. No10. P. 569-589.
- 4. Koepsell H. Glucose transporters in the small intestine in health and disease / H. Koepsell // Pflugers Arch. 2020. Vol. 472. №9. P. 1207-1248.
- 5. Li X. Metformin Affects Heme Function as a Possible Mechanism of Action/X. Li, X. Wang, M.P Snyder // G3 (Bethesda). 2019. –Vol.9. №2. P.513–522.
- 6. Liang X. Transporters Involved in Metformin Pharmacokinetics and Treatment Response /X. Liang, K.M. Giacomini // J Pharm Sci. 2017. Vol. 106. №9. P. 2245-2250.
- 7. Minamii T. Mechanisms of metformin action: In and out of the gut / T. Minamii, M. Nogami, W. Ogawa // J Diabetes Investig. − 2018. − Vol.9. − №4. − P.701−703.
- 8. Molepo M. A Study on Neonatal Intake of Oleanolic Acid and Metformin in Rats (Rattus norvegicus) with Metabolic Dysfunction: Implications on Lipid Metabolism and Glucose Transport / M. Molepo, A. Ayeleso, T. Nyakudya [et al] // Molecules. -2018. Vol. 23. N010. P. 2528
- 9. Podhorecka M. Metformin its potential anti-cancer and anti-aging effects /M. Podhorecka, B. Ibanez, A. Dmoszyńska // PostepyHig Med Dosw (Online). 2017. Vol. 71. P. 170-175.
- 10. Wu H. Metformin alters the gut microbiome of individuals with treatment-naïve type 2 diabetes, contributing to the therapeutic effects of the drug / H. Wu, E. Esteve, V. Tremaroli [et al] // Nat Med. $-2017. \text{Vol.} 23. \text{N}_{2}7. \text{P.}850-858.$

УДК 615.011.

Кабанова К.А., Бахтин В.М., Белоконова Н.А., Изможерова Н.В. КОМПЛЕКСООБРАЗУЮЩИЕ СВОЙСТВА АМИНОГЛИКОЗИДОВ И ФТОРХИНОЛОНОВ ПО ОТНОШЕНИЮ К ИОНАМ МАГНИЯ

Кафедра фармакологии и клинической фармакологии