возрастных периодах отмечается тенденция к увеличению количества детей I группы здоровья в сочетании с медленным снижением наполняемости II группы здоровья к 3 годам. Большинство детей имели физическое развитие гармоничное.

- 2. В структуре заболеваний II группы здоровья на 1-ом месяце жизни преобладали перинатальное поражение ЦНС, гипербилирубинемия, гидроцеле, пупочная грыжа и дакриоцистит; у детей 3-го месяца жизни чаще встречается дисплазия тазобедренного сустава и анемия; у детей 12-го месяца жизни превалирует поражение ЦНС, анемия, пупочная грыжа и гемангиома; у детей 3-го года жизни распространены темповые задержки речевого развития, дизартрия, астигматизм, кариес, гинекологические отклонения.
- 3. В результате исследования выявлена эффективная, на наш взгляд, профилактическая и лечебная работа участковой службы в поликлиниках Железнодорожного района г. Екатеринбурга, т.к. количество детей с I группой здоровья к 3 годам увеличивается на 45%, а численность детей, относящихся ко II группе здоровья снижается на 44%.
- 4. Профилактический медицинские осмотры остаются действенным методом для выявления хронических неинфекционных заболеваний в их доклиническую стадию, что, в свою очередь, с помощью диспансерного наблюдения позволяет увеличить количество здорового детского населения и соответствовать основным задачам Национального проекта «Здравоохранение».

Список литературы:

- 1. Ануфриева Е.В. Особенности здоровья детей и подростков Свердловской области по результатам профилактических осмотров / Е.В. Ануфриева, Л.Н. Малямова, Н.В. Ножкина // Уральский медицинский журнал. 2015. №9. С. 82-86.
- 2. Баранов А.А. Результаты профилактических медицинских осмотров несовершеннолетних в Российской Федерации / А.А. Баранов, Л.С. Намазова-Баранова, Р.Н. Терлецкая, Е.Н. Байбарина, О.В. Чумакова, Н.В. Устинова, Е.В. Антонова, Е.А. Вишнева // Социальная педиатрия. 2016. С. 287- 293.
- 3. Медико-социальные аспекты формирования здоровья детей раннего возраста: дис. доктора мед. наук: специальность ВАК РФ14.02.0 / А.П. Денисов М., 2018. 322c.
- 4. Особенности физического развития детей грудного и раннего возраста в зависимости от медико-социальных и биологических факторов: дис. кандидата мед. наук: специальность ВАК РФ14.01.08 / Т.В. Елизарова М., 2013. 176 с.

УДК 61:001.89

Соколова Н.С., Мартынова Т.А., Бородулина Т.В. ХАРАКТЕРИСТИКА МЕСТНОГО ИММУНИТЕТА У ДЕТЕЙ ГРУДНОГО ВОЗРАСТА

Кафедра факультетской педиатрии и пропедевтики детских болезней

Уральский государственный медицинский университет Екатеринбург, Российская Федерация

Sokolova N.S., Martynova T.A., Borodulina T.V. CHARACTERISTICS OF LOCAL IMMUNITY IN INFANTS

Department of faculty of Pediatrics and propaedeutics of children's diseases
Ural state medical university
Yekaterinburg, Russian Federation

E-mail: nsokolova88@rambler.ru

Аннотация. Состояние иммунитета детей первого года жизни зависит от характера питания. Чтобы оценить состояние местной иммунной защиты у детей грудного возраста используют неинвазивные методы. Дети, вскармливаемые грудным молоком, имеют дополнительную защиту от возбудителей респираторных, кишечных и уринарных инфекций, так как получают sIgA с материнским молоком.

Annotation. The state of immunity of infant depends on the nature of nutrition. To assess the state of local immune protection in infants, non-invasive methods are used. Infants fed with breast milk have additional protection against respiratory, intestinal, and urinal infections, as they receive sIgA with mother's milk.

Ключевые слова: грудное вскармливание, дети первого года жизни, местный иммунитет.

Key words: breastfeeding, infants, local immunity.

Введение

Здоровье, рост и развитие зависит от рационального вскармливания с первых дней жизни [4]. Состояние общей и местной защиты зависит от характера вскармливания. Иммунная система детей первого полугодия жизни незрелая, поэтому для формирования правильного и адекватного иммунного ответа, необходимо грудное молоко, содержащее неспецифические факторы защиты: секреторный иммуноглобулин, лактоферрин, лизоцим, интерферон и другие [7].

Также в формировании местного иммунитета важную роль принадлежит микрофлоре кишечника, происходит активация синтеза секреторного иммуноглобулина плазматическими и эпителиальными клетками кишечника [1]. Таким образом, sIgA препятствует прикреплению и проникновению вирусов и микроорганизмов через эпителий слизистых оболочек, также нейтрализует вирусы внутри эпителиальных клеток [3].

Местный иммунитет у детей грудного возраста оценивается неинвазивными методами: определение в ротовой жидкости и в копрофильтрате [2]. Метод иммуноферментного анализа (ИФА) применяется для определения количества sIgA.

В ранее проведенным исследованиях доказано, что дети, находящиеся на естественном вскармливании, имеют большее количество sIgA в копрофильтратах, по сравнению с детьми на искусственном вскармливании [8]. Это объясняется тем, что с материнским молоком дети получают дополнительно секреторный иммуноглобулин [6]. Поэтому для косвенной оценки состояния местного иммунитета ребенка, можно определить уровень sIgA в грудном молоке [5].

Цель исследования — оценить физическое развитие и состояние местного иммунитета у детей первых 6 месяцев жизни, находящихся на разных видах вскармливания.

Материалы и методы исследования

Исследование проводилось на базе детской поликлиники ГБУЗ СО «Берёзовская центральная городская больница» (г. Березовский) путем безвыборочного, сплошного метода. Открытое сравнительное проспективное исследование.

Участники исследования

В исследовании приняли участие дети первых шести месяцев жизни в возраст от 5-7 дней до 6 месяцев (n=140). Обязательным условием участия в исследовании являлось подписание родителями (законными представителями) добровольного информированного согласия.

Критерии включения детей в исследование: гестационный возраст 37-42 недели; отсутствие органической патологии центральной нервной системы, наследственных и генетических заболеваний, врожденных нарушений обмена веществ, ВИЧ-инфекции.

Критерии исключения детей из исследования: дети с массой тела при рождении менее 2500 г; находящиеся на смешанном вскармливании; с врожденными нарушениями обмена веществ; наследственными и генетическими заболеваниями; органическими поражениями центральной нервной системы; с ВИЧ-инфекцией.

В первую группу вошли 70 детей (девочек -34 (48%), мальчиков -36 (52%), находящихся на исключительно грудном вскармливании. Вторая группа была представлена 70 детьми (девочек -38 (54%), мальчиков -32 (46%), находящихся на искусственном вскармливании адаптированными молочными смесями.

Всем детям комплексная оценка здоровья ежемесячно. Физическое развитие оценивалось с использованием международных стандартов ВОЗ (программа ANTHRO 3.2.2). Рассчитывалась величина Z-score для массы тела относительно длины, массы тела относительно возраста, длина и индекс массы тела относительно возраста.

У кормящих матерей (n=30) нами исследовался состав грудного молока в сроке 3 месяцев лактации с определением уровня sIgA методом твердофазного гетерогенного ИФА с использованием тест-систем фирмы «Вектор-Бест» (Россия, Новосибирск). Параллельно у детей определялся уровень sIgA в

копрофильтрате методом твердофазного гетерогенного ИФА с использованием тест-систем фирмы «Вектор-Бест» (Россия, Новосибирск).

Результаты лабораторных исследований представлены в единицах международной системы СИ и обработаны методами вариационной статистики. Вычислялись средняя арифметическая (М), стандартное отклонение (σ), стандартная ошибка (m). При оценке достоверности различий применялся критерий Стъюдента и считались статистически значимыми при р<0,05. Все расчеты проводились с использованием Excel и STATISTICA10.0.

Результаты исследования и их обсуждение

Большинство детей родились от первой или второй беременности (62,2%), от первых родов (45,7%). Сравниваемые группы детей сопоставимы по массе и длине при рождении. Масса тела при рождении в среднем составила $3,402\pm0,418$ кг, длина тела $51,57\pm1,99$ см, окружность грудной клетки $33,66\pm1,57$ см, окружность головы $34,09\pm1,29$ см

Анализ антропометрических показателей в течение первого полугодия жизни показал, что в обеих группах физическое развитие большинства детей соответствовало паспортному возрасту, однако у детей второй группы к возрасту 6 месяцев значительно чаще определялось увеличение массы тела относительно возраста и длины тела, индекса массы тела (ИМТ) относительно возраста (p<0,05) (табл. 1).

Таблица 1 Показатели величины Z-score у обследуемых детей, абс. ч. (%)

Z-score	І группа (n=70)		II группа (n=70)			
ZI-SCOIC						
	1 мес.	6 мес.	1 мес.	6 мес.		
	1	2	3	4		
	Длина тела относительно возраста					
< -2	2 (2,9)	2 (2,9)	-	-		
-12	7 (10)	5 (7,1)	6 (8,6)	13 (18,6)****		
± 1	38 (54,3)	44 (62,8)	50 (71,4)***	40 (57,1)**		
+1 - +2	18 (25,7)	12 (17,1)	12 (17,1)	14 (20)		
>+2	5 (7,1)	7 (10)	2 (2,9)	3 (4,3)		
Масса тела относительно длины тела						
< -2	2 (2,9)	1(1,4)	5 (7,1)	-		
-12	11 (15,7)	5 (7,1)	12 (17,1)	5(7,1)		
± 1	50 (71,4)	51 (72,9)	43 (61,4)	42 (60)		
+1 - +2	7 (10)	12 (17,1)	8 (11,4)	21 (30)		
>+2	-	1 (1,4)	2 (2,9)	2 (2,9)		
Масса тела относительно возраста						
< -2	2 (2,9)	-	2 (2,9)	1 (1,4)		
-12	9 (12,9)	6 (8,6)	11 (15,7)	5 (7,1)		
± 1	46 (65,7)	50 (71,4)	53 (75,7)	43 (61,4)		
+1 - +2	12 (17,7)	12 (17,1)	4 (5,7)***	19 (27,1)**		

>+2	1 (1,4)	2 (2,9)	-	2 (2,9)		
Индекс массы тела относительно возраста						
< -2	1 (1,4)	1 (1,4)	5 (7,1)	-		
-12	7 (10)	6 (8,6)	9 (12,9)	7 (10)		
± 1	56 (80)	50 (71,4)	52 (74,3)	40 (57,1)**		
+1 - +2	5 (7,1)	12 (17,1)	4 (5,7)	21 (30)**		
>+2	1 (1,4)	1 (1,4)	-	2 (2,9)		

^{*1:2} p<0,05; **3:4 p<0,05; ***1:3p<0,05; ****2:4 p<0,05

Оценивая динамику роста детей на протяжении первого полугодия жизни установлено, что при рождении дети из первой и второй группы не отличались: средняя масса тела и длина тела были практически одинаковыми, но уже в 1 месяц стало заметно отличие в росте и развитии детей. На протяжении первого полугодия жизни достоверно чаще происходило избыточное увеличение массы тела и индекса массы тела относительно возраста в группе детей, получающих адаптированные молочные смеси. Достоверного увеличения индекса массы тела за 6 месяцев в группе детей на грудном вскармливании не было.

Исследование грудного молока на содержание sIgA показало, что у 90% матерей средний показатель sIgA более 400 мг/л, у 10% матерей имелся снижение его количества и средний показатель sIgA составил $283\pm97,1$ мг/л. На снижение sIgA в грудном молоке влияли возраст женщин старше 30 лет, повторные роды, наличие хронической патологии у женщин.

Для оценки локального иммунитета у детей первого полугодия жизни определялся sIgA в копрофильтрате. По полученным данным, у детей на искусственном вскармливании установлены достоверно более низкие значения sIgA в копрофильтрате. У детей I группы уровень sIgA составил $443,63\pm278,55$ мг/л; II группы sIgA $184,57\pm127,09$.

В структуре острой инфекционной заболеваемости за период наблюдения в течение первых 6 месяцев доминировали болезни органов дыхания, наиболее распространенными были острые респираторные инфекции (ринит, ринофарингит) (табл. 2).

Таблица 2 Частота встречаемости инфекционных заболеваний

	I группа (n=70) абс.ч. (%)	II группа (n=70) абс.ч. (%)
ОРИ:		
2 раза	34 (48,6)	45 (64,3)
>3 pa3	5 (3,6)	45 (64,3) 9 (6,4)
Бронхит	-	6 (4,3)*
Энтероколит	1 (0,7)	4 (2,9)
Тубоотит	-	(2,1)*

^{*}p<0,05

Дети, находящиеся на искусственном вскармливании переносили острую респираторную инфекцию тяжелее и чаще, чем дети на естественном вскармливании.

За 6 месяцев наблюдения у 40% детей, находящихся на исключительно грудном вскармливании отсутствовали заболевания и у 11,4% детей, получающих адаптированные молочные смеси.

Большинство детей к 6 месяцам имели вторую группу здоровья в I и II группах (98,6% и 95,7% соответственно).

Выводы:

- 1. Дети, находящиеся на искусственном вскармливании, чаще формируют избыточную массу телу к 6 месяцам.
- 2. Грудное молоко создает основу для формирования неспецифической иммунной защиты, положительно влияет на локальный иммунитет ребенка, повышает резистентность организма ребенка.

Список литературы:

- 1. Киселева Е.П. Акцептивный иммунитет основа симбиотических взаимоотношений / Е.П. Киселева // Инфекция и иммунитет. 2015 № 5(2). С. 113-130.
- 2. Матвеева Е.В. Влияние различных видов вскармливания на соматическую и инфекционную заболеваемость детей первого года жизни / Е.В. Матвеева, Т.И. Легонькова, О.В.Войтенкова, О.Н. Штыкова // Вестник Смоленской государственной медицинской академии. 2016 —№ 15(2). С. 32-35.
- 3. Москалец О.В. Иммуноглобулин А и его селективный дефицит / О.В. Москалец // Казанский медицинский журнал. 2017 Т.98. №5. С. 809-815.
- 4. Санникова Н.Е. Опыт применения и современные подходы к выбору адаптированной молочной смеси для детей, находящихся на искусственном вскармливании / Н.Е. Санникова, Т.В. Бородулина, Л.Н. Малямова // Вопросы современной педиатрии. -2014 № 13(4). -C. 140–144.
- 5. Ellberg C.C. Maternal distress across the postnatal period is associated with infant secretory immunoglobulin A / C.C. Ellberg, K. Sayler, L.C. Hibel // Dev Psychobiol. -2020. N = 62(4). P.544-553.
- 6. Nolan L.S. A Review of the Immunomodulating Components of Maternal Breast Milk and Protection Against Necrotizing Enterocolitis / L.S. Nolan, O.B. Parks, M. Good // Nutrients. 2019. №.12(1).
- 7. Stephen B.J. Xeno-miRNA in Maternal-Infant Immune Crosstalk: An Aid to Disease Alleviation / B.J. Stephen , N. Pareek, M. Saeed, M.A. Kausar, S. Rahman, M. Datta // Front Immunol. 2020. − № 24(11). − P.404.
- 8. Xiao L. Probiotics maintain intestinal secretory immunoglobulin A levels in healthy formula-fed infants: a randomised, double-blind, placebo-controlled study / L. Xiao, C. Gong, Y. Ding, G. Ding, X. Xu, C. Deng, X. Ze, P. Malard X. Ben // Benef Microbes. -2019. No 10(7). -P. 729-739.