Павлова П.А., Чегодаев Д.А., Павлова Н.В., Львова О.А., Давыдова Е.Ю.

ПАТТЕРН ФРОНТАЛЬНОЙ ЭЭГ АСИММЕТРИИ КАК ВОЗМОЖНЫЙ ПОКАЗАТЕЛЬ, ОПРЕДЕЛЯЮЩИЙ ПСИХО-ФИЗИОЛОГИЧЕСКИЕ РАЗВИТИЕ ДЕТЕЙ ПЕРВОГО ГОДА ЖИЗНИ

Департамент психологии

Уральский федеральный университет имени первого президента России Б. Н. Ельшина

Екатеринбург, Российская Федерация

Pavlova P.A, Chegodaev D.A., Pavlova N.V., Lvova O.A., Davydova E.Y. FRONTAL EEG ASYMMETRY AS A POSSIBLE INDICATOR OF DETERMINING PSYCHOPHYSIOLOGICAL DEVELOPMENT OF INFANTS

Department of psychology
Ural federal university named after the first president of Russia B.N. Yeltsin
Yekaterinburg, Russian Federation

E-mail: polinaalexpavlova@gmail.com

Аннотация. В статье рассмотрено использование специфического электроэнцефалографического показателя, так называемого паттерна фронтальной ЭЭГ асимметрии в качестве одного из возможных методов выделения группы риска формирования психических расстройств у детей в более старшем возрасте. Исследование типа «случай-контроль» было проведено в двух группах детей: родившихся доношенными и недоношенными. Дети, родившиеся недоношенными, характеризуются преимущественно правым типом асимметрии, а также имеют более высокие абсолютные значения данного показателя.

Annotation. The article is described the attempt of using a specific electroencephalogram pattern - frontal EEG asymmetry as possible marker to identify risk groups of formation of mental disorders in children at a later age. Case-control study was in groups of full-term infants and infants born preterm. Preterm infants are strongly characterized by a «right» type of asymmetry and higher absolute values of this pattern.

Ключевые слова: электроэнцефалография, фронтальная ЭЭГ асимметрия, недоношенные дети.

Key words: electroencephalography, frontal EEG asymmetry, premature infants.

Введение

За последние несколько лет отмечается неуклонно прогрессирующий рост преждевременных родов [3]. Последующее наблюдение детей, рожденных

недоношенными и обеспечение их комплексной медико-психологической помощью требует понимания большого количества нюансов анатомофизиологических характеристик в качестве основы, определяющей направление их дальнейшего развития. Данный факт диктует необходимость исследования особенностей развития таких детей, начиная с самого раннего периода их жизни.

В настоящее время существует значительное количество методов и подходов, направленных на изучение функциональной активности центральной нервной системы (ЦНС) недоношенных детей. Однако большая часть психологических методов исследования функционального состояния ЦНС и поведенческих аспектов младенцев существенно ограничивается возрастным фактором и отличается высокой долей субъективности данных (в частности, за счет недостоверности предоставляемых родителями сведений при проведении ряда методик). Привычная парадигма использования методов объективного исследования ЦНС, в частности инструментальных, показывает высокую значимость в уточнении анатомо-функционального состояния ЦНС в данный момент времени, но далеко не всегда может служить основой для прогностических выводов дальнейшего развития обследуемых.

Все выше обозначенное послужило поводом для работы с так называемыми «промежуточными» характеристиками ЦНС, способных выступать с одной стороны в качестве объективного маркера функциональной активности головного мозга в ограниченный момент времени, с другой стороны — в качестве устойчивого показателя, характеризующего психолого-поведенческие особенности детей первых месяцев и лет жизни.

Вариантом такого маркера является специфический количественный паттерн электроэнцефалограммы (ЭЭГ) - «фронтальная-ЭЭГ-асимметрия» (frontal EEG asymmetry, FEA) [4], определяемый как показатель, строго связанный с эмоционально-волевыми характеристиками индивидуума и способный отражать тип его поведения в определенных условиях. Существуют два типа асимметрии: правый и левый.

Цель исследования — изучить показатель фронтальной ЭЭГ асимметрии у детей, родившихся недоношенными и выявить особенности показателя в сравнении с доношенными детьми.

Материалы и методы исследования

В исследование были включены две группы детей: контрольная и экспериментальная в возрастном срезе 5 месяцев.

Критерии включения в контрольную группу: младенцы, родившиеся доношенными, имеющие нормативные росто-весовые показатели и не имеющие существенной патологии центральной нервной системы при рождении и на момент проведения исследования. Характеристики контрольной группы: количество участников 23 человек (14 мальчиков); средний возраст = 5.72 ± 2.55 месяцев; гестационный возраст = 39.69 ± 0.72 недель; вес при рождении = 3347 ± 374 грамм; рост при рождении = 51.33 ± 1.83 см; показатели шкалы Апгар на 1 минуте = 8.

Критерии включения в экспериментальную группу: недоношенные младенцы (родившиеся до окончания 37-й недели беременности), весом более 1000г, сроком гестации 28-36 недель, без врожденных пороков развития, поражения ЦНС гипоксически-ишемического тяжелой степени кровоизлияний в головной мозг. При нейросонографии не было выявлено детей данной группы. структурных поражений y Характеристики экспериментальной группы: количество испытуемых 10 человек (5 мальчиков); средний возраст = 4.91 ± 0.53 месяцев; гестационный возраст = 32.4 ± 2.65 недель; вес при рождении = 1634 ± 334 грамм; рост при рождении = $41,1\pm5,13$ см; показатели шкалы Апгар на 1 минуте = 5.3 ± 0.67 ; показатели шкалы Апгар на 1 минуте = 6.4 ± 0.84 .

Возраст испытуемых экспериментальной группы был скорректирован в соответствии с участниками контрольной группы. Испытуемые из данных групп были уравнены по социально-экономическому статусу семьи.

Все испытуемые прошли процедуру записи биоэлектрической активности мозга, осуществлённую при помощи высокоплотного электроэнцефалографа «Electrical Geodesic 128-channel EEG System, GES300» (128 отведений), установленного в Лаборатории мозга и нейрокогнитивного развития. Для регистрации данных использовались электродные системы Hydro Cell Geodesic Sensor Net. Сигнал регистрировался с вертексным референтным электродом в диапазоне от 0.1 до 100 Гц, частота оцифровки сигнала составляла 500 Гц. Процедура регистрации ЭЭГ была проведена в затемненном помещении с высоким уровнем звуко- и электро-изоляции. На протяжении всей процедуры дети находились на коленях родителя. Во время регистрации состояния относительного фона для привлечения внимания детей и нахождения их в спокойном состоянии, использовался видеоролик, продолжительностью 3 минуты, демонстрировавший неяркий видеоряд с плавающими рыбками, сопровождаемый мелодичной, тихой музыкой. монитора Экран был расположен на расстояние ~ 60 см от испытуемых.

производилась Обработка данных при помощи программного обеспечения Net Station 5.4 EEG Software. Записи проходили процедуру использованием высокочастотного фильтра $(0.5 \Gamma_{\rm II})$ низкочастотного фильтра (40 Гц). Фрагменты записей, характеризующиеся спокойным состоянием, неподвижностью детей и поддержанием внимания к стимульному материалу, были разделены на сегменты продолжительностью 2 секунды. Далее производился автоматический и ручной анализ артефактов. имеющие низкое качество сигнала, были интерполированы с применением встроенного программного алгоритма. Следующий шаг проведение процедуры смены референта ЭЭГ сигнала относительно общего усредненного референта (average reference) и коррекция базовой линии. Полученные данные были подвергнуты быстрому преобразованию Фурье (FFT) в диапазоне альфа с использованием окна Ханнинга. Спектральная мощность 6,0425-9,0332 Гш была рассчитана диапазона следующих для топографических областях: для левой лобной области – электроды: 12, 19, 20, 23, 24, 26, 27, 28, 33, 34; для правой — электроды: 2, 3, 4, 5, 116, 117, 118, 122, 123, 124.

Полученные показатели спектральной мощности использовались для расчёта значений фронтальной ЭЭГ асимметрии, с применением формулы $\ln(P(Right)/P(Left))$, где P — значение мощности альфа-диапазона во фронтальных областях соответствующих сторон.

Результаты исследования и их обсуждение

Для сравнения показателей фронтальной ЭЭГ асимметрии между группами был использован непараметрический U-критерий Манна-Уитни, в связи с небольшими размерами выборок и разным количеством участников в них. Уровень статистической значимости равен p=0,028 (U=59). Разница показателей абсолютных значении ЭЭГ асимметрии экспериментальной и контрольной групп составляет 3 раза, с более высокими показателями в экспериментальной группе. Правый тип асимметрии демонстрируется наиболее часто в экспериментальной группе (80%), по сравнению с контрольной группой (45,83%).

Дети, рожденные недоношенными, имеют более высокий формирования проблем психологической (особенно эмоциональной) сферы в более старшем возрасте [1], в том числе депрессии [5]. В течение продолжительного времени многими исследователями феномен фронтальной ЭЭГ асимметрии рассматривается в качестве маркера риска развития депрессии и некоторых других психических расстройств [4]. Исследования феномена FEA, определяемого в условиях покоя, при этой патологии показали преобладание правого типа асимметрии и его относительно высокие значения у пациентов с депрессией в сравнении с группами контроля [6]. Как известно, мультифакторное заболевание c наследственной предрасположенностью, при котором генетические факторы значительную роль в формировании. В последнее время в рамках изучения концепция эндофенотипа, выделяется ИЛИ промежуточного фенотипа, который определяется как комплекс измеряемых специфических биомаркеров, коррелирующих с заболеванием. Эндофенотип в структуре патологии располагается ближе к непосредственному уровню эффекта генов; уровень генетического влияния на них выше и лучше поддается анализу. В отличие от многообразия и сложности клинических проявлений (фенотипа) депрессии и конфликтности диагностических категорий, анализ эндофенотипа дает возможность понимания более простых взаимодействий «ген-маркер», а не «генклинический фенотип» [2]. Именно в качестве такого эндофенотипа может рассматриваться паттери фронтальной ЭЭГ асимметрии, применимый для выявления формирования неспецифических маркеров нарушения психической и психологической сферы у детей, начиная с раннего возраста. Сложности применения заключается в том, что данный паттерн является нестационарным и его показатели могут изменятся с течением времени.

Выволы:

- 1. Показатели фронтальной ЭЭГ асимметрии группы недоношенных детей представлены более высокими абсолютными значениями по сравнению с группой доношенных, типично-развивающихся детей.
- 2. Правый тип асимметрии демонстрируется наиболее часто у недоношенных детей, по сравнению с доношенными детьми.
- 3. Данный паттерн может служить значимым способом объективизации данных, получаемых при помощи типично применяемых психологических методов опроса.
- 4. Разница показателей фронтальной ЭЭГ асимметрии у доношенных и недоношенных детей может быть рассмотрена в качестве фактора выделения групп риска формирования нарушений психической и/или психологической сферы на этапе дальнейшего развития.

Список литературы:

- 1. Волгина С.Я. Состояние здоровья недоношенных детей в отдаленные периоды жизни (комплексное клинико-психосоциальное исследование): автореф. д-ра медицинских. наук. Казанский государственный медицинский университет, Москва, 1999.
- 2. Незнанова Н.Г. Essays on Dynamic Psychiatry: a transcultural study. 2007. Очерки динамической психиатрии. Транскультуральное исследование / под ред. М.М. Кабанова. Институт им. В.М. Бехтерева, 2003. 368 с.
- 3.Состояние здоровья беременных, рожениц, родильниц и новорожденных (Данные Минздрава России, расчет Росстата [Электронный ресурс].URL:http://www.gks.ru/wps/wcm/connect/rosstat_main/rosstat/ru/statistics/p opulation/healthcare/# (дата обращения: 05.02.2019).
- 4. Coan J.A. Frontal EEG asymmetry as a moderator and mediator of emotion / J.A. Coan, J.J. Allen // Biol Psychol. $-2004. N_{\odot} 67. P. 7-49.$
- 5. Schmidt L.A. Frontal electroencephalogram asymmetry, salivary cortisol, and internalizing behavior problems in young adults who were born at extremely low birth weight / L.A. Schmidt, V. Miskovic, M. Boyle, S. Saroj // Child Development, January. $-2010 \text{Vol. } 81 \text{N} \underline{0} 1. \text{P.}183-199.$
- 6. van der Vinne N. Frontal alpha asymmetry as a diagnostic marker in depression: Fact or fiction? A meta-analysis. / M.A. Vollebregt, MJAM van Putten, M. Arns // Neuroimage Clin. -2017 N = 15. -P. 79-87.

УДК 616.74-009.54

Поляков А.О., Волкова Л.И. ПРОГРЕССИРУЮЩАЯ МЫШЕЧНАЯ ДИСТРОФИЯ КАК ПРИЧИНА ИЗОЛИРОВАННОЙ ДИСФАГИИ. РАЗБОР КЛИНИЧЕСКОГО СЛУЧАЯ

Кафедра нервных болезней, нейрохирургии и медицинской генетики Уральский государственный медицинский университет Екатеринбург, Российская Федерация

Polyakov A.O., Volkova L.I.