5. Параметры микроклимата (влажность) и освещённость не соответствуют норме.

Список литературы:

- 1. Санитарно-эпидемиологические требования к организациям, осуществляющим медицинскую деятельность: СанПиН 2.1.3.2630-10 от $04.06.2016\ \Gamma$.
- 2. Акульшин В.Д. Влияние смены экологической и социальной среды обитания на состояние здоровья и психоэмоциональный статус медицинских работников / В.Д.Акульшин, Ю.Ю.Елисеев // Саратовский научно-медицинский журнал. 2011. Т.4 С.13-18.
- 3. Джураева Н.С. Оценка степени влияния факторов производственной среды на возникновение стрессов в профессиональной деятельности медицинских работников / Джураева Н.С. // Вестник Авиценны. 2013. №2. С. 128-133.
- 4. Н. Ф. Измеров. Гигиена труда / Н. Ф. Измеров, В. Ф. Кириллов. М. : ГЭОТАР-Медиа, 2016. 480 с.
- 5. Руководство к практическим занятиям по гигиене труда: учебное пособие / Под ред. В.Ф. Кириллова. 2008. 416 с.

УДК 613.6

Шмакова Е.Е., Липатов Г.Я. ДИСПЕРСНЫЙ СОСТАВ ПЫЛИ В ГИДРОМЕТАЛЛУРГИЧЕСКОМ ПРОИЗВОДСТВЕ МЕДИ

Кафедра гигиены и профессиональных болезней Уральский государственный медицинский университет Екатеринбург, Российская Федерация

Shmakova E.E., Lipatov G.Ya. DISPERSE COMPOSITION OF DUST IN HYDRO-METALLURGICAL PRODUCTION OF COPPER

Department of hygiene and occupational diseases
Ural state medical university
Ekaterinburg, Russian Federation

E-mail: Ekaterina-cypush@mail.ru

Аннотация. В статье рассмотрены основные технологические процессы пиро- и гидрометаллургии меди. Проведен отбор проб воздуха рабочей зоны в

соответствии с ПНДФ 13:2:3.71-11. Дана краткая сравнительная характеристика дисперсного состава пыли.

Annotation. The article describes the main technological processes of pyroand hydrometallurgy of copper. Air sampling of the working area was carried out in accordance with PNDF 13: 2: 3.71-11. A brief comparative characteristic of the dispersed dust composition is given.

Ключевые слова: пирометаллургия, гидрометаллургия, дисперсный состав, пыль.

Key words: pyrometallurgy, hydrometallurgy, dispersed composition, dust.

Введение

Медь обладает рядом уникальных свойств, среди которых важнейшими являются ее высокая пластичность, тепло- и электропроводность. Это, в свою очередь, повлекло за собой наращивание мощности медеплавильных комбинатов и увеличение численности работающих на них лиц. На предприятиях цветной металлургии применяются два основных способа получения меди – пирометаллургический и гидрометаллургический.

Цель исследования - сравнить дисперсный состав пыли пирометаллургического и гидрометаллургического производств.

Материалы и методы исследования

Отбор проб воздуха рабочей зоны проводился в соответствии с 13:2:3.71-11 требованиями ПНДФ Количественный химический анализ атмосферного рабочей воздуха 30НЫ. Методика измерений массовых концентраций загрязняющих компонентов воздухе рабочей В 30НЫ, атмосферном воздухе, промышленных выбросах, промышленных выбросах в атмосферу методом атомно-эмиссионной спектрометрии и ГОСТ 12.1.005-88 Общие санитарно- гигиенические требования к воздуху рабочей зоны.

Забор материала осуществлялся прибором ΠA -40 и фильтрами $A\Phi A$ -XA на уровне органов дыхания с объемным расходом 10-15дм³/мин, продолжительность отбора одной пробы не менее 15 минут. В течение смены на отдельных этапах технологического процесса в одной точке отобрано 8 проб.

При помощи общепринятых методик фильтры растворены ацетоном на водяной бане и зафиксированы на смотровых стеклах, результаты посчитаны под микроскопом и обработаны в программе Excel.

Результаты исследования и их обсуждения

Пирометаллургический способ пригоден для переработки всех руд и особенно эффективен в том случае, когда руды подвергаются обогащению. Основу этого процесса составляет плавка, при которой расплавленная масса разделяется на два жидких слоя: штейн-сплав сульфидов и шлак-сплав окислов. В плавку поступают либо медная руда, либо обожженные концентраты медных руд. Обжиг концентратов осуществляется с целью снижения содержания серы до оптимальных значений. Жидкий штейн продувают в конвертерах воздухом

для окисления сернистого железа, перевода железа в шлак и выделения черновой меди. Черновую медь далее подвергают рафинированию – очистке от примесей [1].

Гидрометаллургический способ не нашел широкого применения, однако остается востребован для переработки бедных окисленных руд и отвалов. Объектом исследования послужило предприятие «Уралгидромедь» единственное в России, добывающее медь гидрометаллургическим способом. Производство состоит ИЗ двух основных технологических жидкостной экстракции и электролиза меди. Медьсодержащие растворы выщелачивания, предварительно нагретые пластинчатом подземного В теплообменнике горячей водой, подаются на жидкостную экстракцию. Этот процесс проходит в двух экстракторах, каждый из которых состоит из камеры смешения и камеры отстоя. Органическая фаза состоит из экстрагента Lix984N и разбавителя Shellsol D-90. Уникальные свойства экстрагента позволяют более чем на 90% извлечь медь из раствора в органическую фазу. При этом практически все содержащиеся в растворе примесные элементы остаются в растворе. Основа новой технологии – это массообмен между водным раствором медьсодержащих соединений и так называемой органической фазой – жидкостью с низкой плотностью и концентрацией экстрагента от 6 до 12%. После смешивания этих жидкостей образовавшаяся эмульсия направляется на отстаивание, в ходе которого жидкости в силу различия плотностей вновь разделяются. На основе обогащенной медью органической фазы образуется раствор с высокой концентрацией меди. В дальнейшем медь извлекается посредством электровининга, а раствор, из которого она извлечена, вновь используется для подземного выщелачивания. В результате третьего этапа (электролиз) получаются медные катоды, которые промываются, сдираются со стальных основ, взвешиваются и упаковываются [2,3].

Исследованиями условий труда рабочих, занятых пиро-И гидрометаллургии меди является сложным комплексом неблагоприятных химических и физических факторов производственной среды. Важнейшим из них является запыленность воздуха рабочей зоны. На поведение частиц аэрозоля в воздухе и элиминацию их из организма существенное влияние оказывает дисперсный состав пыли. Исследование дисперсности витающей пыли позволило установить, что преобладающее число пылинок - 77-91% имеет размеры менее 1 мк в пирометаллургическом производстве, что определяет устойчивый характер ее присутствия в воздухе рабочей зоны и длительное органах дыхания. Однако при гидрометаллургическом производстве меди наблюдается другая картина дисперсного состава пыли. Преобладание пылинок В размере 1-5мк наблюдается операторская, экстракция, электролиз и составляет 42-53%, на сдирке преобладают более крупные частицы более 10 мк 52% соответственно. представлена в большей мере аэрозолями конденсации.

Таблица 1

Дисперсный состав пылей пиро- и гидрометаллургического производства меди

Произрадать	Колич Количество частиц, %							
Производств		лич Количество частиц, %						
о, технологический процесс	ество измерений	1мк	До	5мк	1-	5- 10мк	10 мк и более	
Пирометаллургическое производство								
Дробление шихтового материала	8	8	77,	7	18,	2,3	0,2	
Сушка шихты	6	7	82,	7	15,	1,2	0,4	
Транспортир овка сырья	5	2	62,	3	37,	-	0,5	
Выпуск штейна	26	0	85,	6	14,	0,2	0,2	
Выпуск шлака	22	3	87,	3	12,	0,2	0,2	
Обжиг с получением огарка	16	2	84,	7	13,	1,5	0,6	
Конвертиров ание	9	5	94,		5,5	0,2	-	
Выплавка металлической меди	36	6	91,		7,5	0,4	0,5	
Гидрометаллу	ргическое прои	ізводс	тво					
Операторска я	4		3,3	5	48,	17, 5	30, 7	
Экстракция	8		4,9	7	50,	20,	24,	
Электролиз	8		3,2	6	41,	30,	24, 8	
Сдирка	8		1,8	1	24,	22,	51,	

Выводы

1.В гидрометаллургическом производстве в дисперсном составе пыли частицы размером 1-5мк и 5-10мк преобладают на экстракции и электролизе, на этапе сдирки наблюдается большее количество пылинок размером 10мк и более.

2. В пирометаллургическом производстве в воздухе рабочей зоны преобладают частицы размером менее 1 мк, следовательно будет наблюдаться более длительное нахождение пыли в органах дыхания и оседание в легких.

Список литературы

- 1. Липатов Г.Я., Гигиеническая характеристика пылевого фактора при электротермическом процессе получения медно-никелевого штейна /Г.Я. Липатов, А.В. Сакнынь, П.С. Старков и др. //Сб.: Профессиональные болезни пылевой этиологии. М., 1975. С.49-54
- 2.Набойченко С.С. Процессы и аппараты цветной металлургии/С.С. Набойченко, Н.Г. Агеев, С.В. Карелов, С.В. Мамяченков, В.А. Сергеев //Издво Урал.ун-та, Ектеринбург, 2013, 564с.
- 3. Халезов Б.Д. Кучное выщелачивание медных и медно-цинковых руд//-Екатеринбург, 2013. Монография 332c.

УДК 616.7:378:61

Шонохова Е.А., Решетова С.В. ФАКТОРЫ РИСКА ВОЗНИКНОВЕНИЯ БОЛЕЙ В СПИНЕ У СТУДЕНТОВ УГМУ

Кафедра гигиены и экологии Уральский государственный медицинский университет Екатеринбург, Российская Федерация

Shonokhova E.A., Reshetova S.V. RISK FACTORS FOR THE OCCURRENCE OF USMU STUDENTS' BACK PAIN

Department of hygiene and ecology Ural state medical university Yekaterinburg, Russian Federation

E-mail: shonohova98@mail.ru

Аннотация. В статье проанализированы результаты анкетирования студентов 3 курса лечебно-профилактического факультета, проведенного с целью выявления факторов риска возникновения болей в спине; дана гигиеническая оценка учебной мебели и веса студенческих сумок.

Annotation. The article analyses the results of survey of the third-year students of the medical-prophylactic faculty, conducted in order to identify risk factors for the occurrence of back pain; the hygienic assessment of educational furniture and the weight of student bags is given.

Ключевые слова: боль в спине, факторы риска, профилактика

Key words: back pain, risk factors, prevention