ток в организме животного. Докт. диссертация, Обнинск, 1979, НИИ медраднологии.

3. Коноплянников А. Г. Радиобпология стволовых клеток. М., Энер-

гоатомиздат, 1984.

 Коноплянников А. Г. Методические рекомендации по вопросам определения численности кроветворных колониеобразующих единиц (КОЕ) с помощью тестов экзогенных и эндогенных селезеночных колоний. Обнинск, 1975 г.

ВЛИЯНИЕ МЕТАБОЛИТОВ НА ВОССТАНОВЛЕНИЕ ГЕМОПОЭЗА ПРИ РАДИАЦИОННОМ ПОВРЕЖДЕНИИ

Макеев О. Г., Ястребов А. П.

СВЕРДГМИ МЗ РСФСР, Свердловск

Характер пострадиационного восстановления зависит как от степени поражения организма, так и от реакции кроветворения, к регуляции которого при экстремальных воздействиях определённое отношение имеют метаболические факторы.

Целью настоящего исследования явилось изучение влияния метаболитов, образующихся в организме при экстремальных воздействиях — янтарной и β-оксимасляной кислот, инозина на процессы пострадиационного восстановления кроветворения.

При шестикратном (40 мг/кг внутрибрюшинно, 1 раз/сут) введении мышам линии СВА янтарата и β-оксибутирата натрия, а также инозина после однократного γ-облучения (4 Гр) наблюдается увеличение числа лейкоцитов периферической крови, лимфоидных клеток костного мозга (на 19, 30, 33% соответственно), ядерных клеток костного мозга (на 22, 30, 48%), увеличение плацдарма кроветворения. Одновременно в костном мозге возрастает количество колониеобразующих единиц селезенки КОЕ-С (на 79, 130, 36%).

В последующих экспериментах с введением исследуемых метаболитов реципиентам костного мозга перед облучением и после летального облучения на фоне введенных клеток костного мозга отмечено как возрастание числа КОЕ-С, так и синтетической активности колоний, что свидетельствует о способности метаболитов изменять индуцирующее кроветворное микроокружение. В экспериментах с определением концентрации циклических нуклеотидов и применением ингибиторов синтеза простагландинов установлено, что при возрастании уровия метаболитов изменяется активность простагландинсинтетазной и аденилатциклазной систем, через которые, вероятно, метаболиты реализуют свое радиомодифицирующее действие.