Материалы и методы исследования

Травму нерва осуществляли в модели на лабораторных кроликах. Всего прооперировано 7 животных. У кроликов перед операцией удаляли шерсть, обрабатывали операционное поле антисептиком. Пол общим наркозом послойно рассекали ткани, среди мышц выделяли пучок седалищного нерва, прошивали лигатурами два участка через эпиневрий и пересекали нерв между ними. В мышце формировали ложе для нерва, между концами пересеченного нерва размещали нановолокна в альбуминовой основе, сводили концы при помощи наложенных лигатур, ушивали нерв между пучками окружающих мышц. Коллатеральная конечность служила в качестве контрольной. Забор материала осуществлялся в 10% нейтральный формалин, время фиксации – 1 сутки. Изготавливались гистологические срезы, которые окрашивались гематоксилин-эозином, а также проводились иммуногистохимические реакции с использованием моноклональных антител к PCNA и фактору роста нервного волокна. Иммуногистохимические реакции выполнялись на автостейнере DAKO.

Результаты исследования и их обсуждение

По результатам гистологического исследования в месте прямого приложения травмирующей силы к нерву в результате воспалительных, глиальных реакций образовался соединительнотканный рубец. В рубце можно выделить три зоны, отличающиеся по клеточному составу: а) центральную соединительнотканную; б) промежуточную глиосоединительнотканную по обе стороны от центральной зоны; в) периферическую глиозно-кистозную. Грубые соединительнотканные волокна, особенно расположенные поперечно к оси спинного мозга, являются механическим препятствием для прорастания аксонов. Однако, известно, что клеточные глиальные элементы, в частности, астроциты, могут выделять целый ряд факторов, стимулирующих регенерацию. Поэтому модуляция процесса образования рубца является одним из элементов влияния на процесс регенерации.

В разработанной экспериментальной модели повреждения периферического нерва и его восстановления с помощью углеродных нановолокон удалось оценить влияние нанотрубок на процесс регенерации нервной ткани. Использование нанотрубок приводило к изменению клеточного состава рубца, меняло число и ориентацию соединительнотканных волокон и даже усиливало коллатеральный спраутинг.

REIBORE

- 1. Создана экспериментальная модель, позволяющая объективно оценивать эффективность применения нанотрубок на процесс регенерации нервных волокон.
- 2. Разработана методика количественной оценки влияния нанотрубок на процессы регенерации нервных волокон с использованием морфометрических и иммуногистохимических методов исследования.

ЛИТЕРАТУРА

- 1. Симонова И. А. Клинико-статистическая характеристика позвоночно-спинномозговой травмы [Текст] / Симонова И. А., Кондаков Е. Н. Материалы III съезда нейрохирургов России Санкт-Петербург 4-8 июня 2002.
- 2. 2. Andrews RJ. Neuroprotection at the nanolevel Part I: introduction to nanoneurosurgery. [Text] / Andrews RJ. // Ann N Y Acad Sci. 2007. № Dec;1122. P. 86 95.
- 3. Interfacing Neurons with Carbon Nanotubes: Electrical Signal Transfer and Synaptic Stimulation in Cultured Brain Circuits [Text] / Andrea Mazzatenta, Michele Giugliano, Stephane Campidelli, Luca Gambazzi, Luca Businaro, Henry Markram, Maurizio Prato, Laura Ballerini // Journal of Neurosince. − 2007. № 27. − P. 25 − 34.
- 4. Silva GA Neuroscience nanotechnology: progress, opportunities and challenges [Text] / Silva GA // Nat Rev Neurosci. 2006. № 7. P. 65-74.

ОСОБЕННОСТИ ГЕОМЕТРИИ ЛЕВЫХ КАМЕР СЕРДЦА, СИСТОЛИЧЕСКАЯ И ДИАСТОЛИЧЕСКАЯ ФУНКЦИИ ЛЕВОГО ЖЕЛУДОЧКА У ЖЕНЩИН В ПОЗДНЕМ ФЕРТИЛЬНОМ ПЕРИОДЕ С АРТЕРИАЛЬНОЙ ГИПЕРТОНИЕЙ С НОРМАЛЬНЫМ И СНИЖЕННЫМ УРОВНЕМ ЭСТРАДИОЛА В СЫВОРОТКЕ КРОВИ

Хабибулина М.М, Николаенко О.В.

Научные руководители – проф. Гришина И.Ф., доц. Хабибулина М.М. Кафедра поликлинической терапии с курсом инструментальной диагностики ФПК и ПП МУ «Екатеринбургский консультативно-диностический центр», г. Екатеринбург ГОУ ВПО «Уральская Государственная Медицинская Академия» Росздрава;

Повышение частоты сердечно-сосудистых заболеваний у женщин не вызывает сомнений [1]. Причину этого ряд исследователей видит в изменении гормонального фона, который меняется в различные периоды жизни женщины. Прежде всего, речь идет о начинающемся снижении уровня эстрогенов в ПФП [1,2,3,4]. которые обладают кардиопротективным действием. Также в условиях гормонального дисбаланса происходит повышение АД, структурно-функциональная перестройка отделов сердца. Низкий уровень эстрогенов и прогестерона может, наряду с другими факторами, способствовать развитию АГ или ухудшать течение данного заболевания в этот период. Однако, несмотря на несколько клинических исследований, касающихся

зависимости изменений морфофункционального состояния сердца от уровня эстрогенов в сыворотке крови у женщин в климактерическом периоде [5,6]; в доступной нам литературе мы не встретили данных, посвященных изменениям в структурно-функциональном состоянии левых отделов сердца у женщин в поздний фертильный период от уровня половых гормонов.

Кроме того, учитывая тот факт, что у женщин в перименопаузе нередко имеет место прогрессирование сопутствующей АГ, вносящей свой вклад в структурную перестройку левых камер сердца. связанное с дисбалансом половых гормонов, достаточно актуально, на наш взгляд, является изучение особенностей ремоделирования камер сердца у женщин, страдающих АГ в ПФП и, имеющих определенные изменения в уровне половых гормонов, в том числе эстрадиола, что может иметь прогностическое значение для данной категории пациенток в климактерическом периоде, что и было целью нашей работы.

Таким образом, целью нашего исследования явилось изучение морфофункционального состояния левых камер сердца и формирование различных типов геометрического ремоделирования у женщин с АГ в поздний фертильный период с нормальным и измененным гормональным фоном.

Материалы и методы исследования

Обследованы 73 женщины с АГ II стадии (классификация ВОЗ, 1999г.) в поздний фертильный период [3] от 35 до 45 лет, средний возраст 40,33±3,20 лет. Длительность АГ составляет в среднем 4,3±1,7 лет. В исследование включали больных АГ со средним уровнем систолического АД 157,5±5,2 мм рт. ст. и средним уровнем диастолического артериального давления 99,5±3,8 мм рт. ст. В исследование не вошли пациентки с ИБС, ХСН, дислипидемией, сахарным диабетом, реноваскулярной патологией.

Все исследуемые пациентки с АГ были разделены на две группы. Группу I составили 36 женщин, средний возраст 39.01 ± 2.77 лет, с АГ в позднем фертильном периоде с нормальным уровнем эстрадиола, (средний уровень 0.60 ± 0.08 пкг/мл) и нормальным уровнем ФСГ (фолликулостимулирующий гормон — 6.89 ± 0.42 МЕ/мл). В группу II вошли 37 женщин, средний возраст 41.11 ± 3.7 лет с АГ в ПФП (с сохраненным ритмом и характером менструаций) с измененным уровнем гормонов: со сниженным уровнем эстрадиола (среднее значение 0.29 ± 0.05 пкг/мл) и более высоким уровнем фолликулостимулирующего гормона (ФСГ) в плазме крови (29.84 ± 1.27 МЕ/мл). Пациентки, составившие клинические группы, были сопоставимы по тяжести течения и продолжительности АГ.

На следующем этапе всем пациенткам проводилось эхокардиографическое обследование с анализом структурно-геометрических показателей левых камер сердца, оценкой систолической и диастолической функций левого желудочка. Исследование осуществлялось на ультразвуковом аппарате Acuson 128/XP 10 (USA) векторным датчиком с частотой 2,5 MHz по стандартной методике.

Для оценки геометрии левых отделов сердца изучались следующие показатели: толщина межжелудочковой перегородки в систолу и диастолу (см), толщина задней стенки левого желудочка в систолу и диастолу (см), конечный систолический размер левого желудочка (КСР $_{\pi K}$, см), конечный диастолический размер левого желудочка (КДР $_{\pi K}$, см), индексы сферичности левого предсердия в диастолу (ИС $_{\pi K}$, ед.) и левого желудочка в диастолу (ИС $_{\pi K}$, ед.), относительная толщина стенок левого желудочка (ОТС $_{\pi K}$, ед.), масса миокарда левого желудочка (ММ $_{\pi K}$, г) и индекс массы миокарда левого желудочка (ИММ $_{\pi K}$, г/м²). [7,8] В соответствии с принципами Lang R. et el. [9,10] выделялись следующие типы ремоделирования левого желудочка: концентрическое ремоделирование левого желудочка (КР $_{\pi K}$) — ОТС $_{\pi K}$ 0,45 ед. и более, и ИММ $_{\pi K}$ менее 105 г/м² у женщин); концентрическая гипертрофия левого желудочка (КГ $_{\pi K}$) — ОТС $_{\pi K}$ 0,45 ед. и более, и ИММ $_{\pi K}$ 105 г/м² и более у женщин; эксцентрическая гипертрофия левого желудочка (ЭГ $_{\pi K}$) — ОТС $_{\pi K}$ менее 0,45 ед. и ИММ $_{\pi K}$ 105 г/м² и более у женщин.

Для оценки систолической функции левого желудочка рассчитывались следующие показатели: фракция выброса левого желудочка ($\Phi B_{\pi K}$, %), фракция сокращения левого желудочка ($\Phi C_{\pi K}$, %), интегральный систолический индекс ремоделирования (ИСИР, ед.), рассчитанный по формуле ИСИР = ΦB ЛЖ/ИСЛЖ [9], интеграл аортального потока (м), трансаортальный градиент (мм рт. ст.), ударный объем (УО, мл), конечносистолический меридиональный стресс (КСМС, дин/см²), рассчитанный по методике R.Devereux [10]: КСМС = $\{0.98 \times (0.334 \times KCP \times CAД)/T3CЛЖсист \times (1+T3CЛЖсист/KCP)-2\} \times 10$, где САД – среднее артериальное давление, ТЗС лж систол. – толщина задней стенки левого желудочка в систолу.

Состояние диастолической функции левого желудочка сердца оценивалось на основании следующих показателей: скоростей раннего диастолического наполнения (E, м/с) и позднего диастолического наполнения левого желудочка (A, м/с), интеграла трансмитрального потока (м), интегралов скоростей E и A (м). отношения интегралов A и E (ед.), времени замедления раннего диастолического наполнения левого желудочка (DT_E, c), времени изоволюмического расслабления (ВИР, мс), конечного диастолического давления (КДД, мм рт. ст.), конечно-диастолического напряжения стенок левого желудочка (КДНС $_{\pi ж}$, дин/см²).

Статистическая и математическая обработка результатов проводилась на персональном компьютере с помощью пакета прикладных программ «Statistica 6.0». Данные представлены в виде средних арифметических величин и стандартного отклонения ($M\pm\sigma$). Различия считались достоверными при p<0.05.

Результаты исследования и их обсуждение

При сравнительном анализе структурно-геометрических показателей левых камер сердца у женщин в поздний фертильный период с нормальным и измененным уровнем гормонов установлено, что исследуемые параметры в клинических группах характеризовались, прежде всего, изменением сферической формы левого желудочка (табл.1).

У женщин с АГ в ПФП с измененным содержанием в сыворотке крови эстрадиола и ФСГ значения $ИС_{\pi \pi}$ оказались достоверно большими, чем у больных АГ в ПФП с нормальным уровнем этих лабораторных данных (р < 0.05).

Показатель, характеризующий геометрию левого предсердия ($ИС_{ЛП}$), у пациенток с АГ в ПФП с нормальным и измененным уровнем гормонов достоверно отличались между собой (р < 0.05), имелась тенденция к сферизации левого предсердия у пациенток с АГ в ПФП с повышенным содержанием ФСГ и сниженным эстрадиолом.

Изменение сферичности левого желудочка сердца у женщин с АГ в ПФП сопровождалось достоверным утолщением межжелудочковой перегородки и задней стенки левого желудочка во 2 группе пациенток (р<0,001), при этом гипертрофия стенок левого желудочка сердца формировалась равномерно, без видимых зон локальной гипертрофии.

Закономерно в исследуемых группах менялись и более точные структурные показатели левого желудочка сердца, такие как $MM_{\pi K}$ и $MM_{\pi K}$. Значения этих параметров у женщин с $A\Gamma$ в том же периоде оказались достоверно выше у лиц с измененным уровнем гормонов (p<0.001).

Таблица 1 Структурно-геометрические показатели АГ в ПФП с нормальным и измененным гормональным фоном.

Параметр	1 группа	2 группа	P 1-2
ИС ЛП (усл.ед.)	0,64±0,002	0,66±0,01	<0,05
ИС ЛЖ ди (усл. Ед)	0,63±0,004	0,65+0,009	<0,05
ММЛЖ(г)	235,47±1,605	241,75+4,51	<0,05
ИММЛЖ(г/м²)	116,43±0,66	137,12+2,59	<0,001
ТМЖП ЛЖ всистолу(см)	1,44±0,008	1,522±0,023	<0,001
ТМЖП ЛЖ в диаст(см)	0,92±0,007	1,06±0,018	<0,001

Продолжение таблицы 1

Продолжение таблицы 1	1,56±0,037	1,556±0,017	Нд
ТЗСЛЖ в систол(см)			
ТЗСЛЖ в диастолу (см)	0,92±0,007	1.15±0,007	<0,001
ОТС (усл. ед)	0,42±0,005	0,49+0.007	<0,001
КДР (см)	4,28±0.041	4,91±0,01	<0,001
КСР (см)	2,69±0,034	3,05±0,039	<0,001

Выявленные различия в структурно-геометрических показателях позволяют предположить, что у женщин с АГ в ПФП с измененным уровнем гормонов можно с большей частотой ожидать формирование гипертрофических типов перестройки геометрии левых отделов сердца, чем у пациенток с АГ в ПФП, имеющих сохраненный гормональный фон. Для подтверждения данного суждения на следующем этапе нами проведен анализ частоты развития различных типов ремоделирования в исследуемых группах. У пациенток с АГ в ПФП с измененным уровнем гормонов, ремоделирование с развитием гипертрофии миокарда левого желудочка имело место в 86% случаев, при этом в 40% наблюдений с формированием концентрического типа и в 46% – с эксцентрическим ее вариантом (табл.2).

Таблица № 2 Типы структурно-геометрической перестройки левого желудочка у пациенток с АГ в ПФП с нормальным и измененным гормональным фоном

Типы структурно-геометрической перестройки левого желудочка	Группа 1	Группа 2
КГлж	(39%)	(60%)
жл€	(7%)	(6 %)*
Всего случаев ремоделирования с формированием гипертрофии миокарда левого желудочка	(46%)	(66%)*
КР _{лж}	(25%)	(14%)
Нормальная геометрия	(29%)	(20%)*

Примечание: * - достоверность различий при сравнении групп I и II при р < 0,05.

Среди больных АГ в ПФП с нормальным гормональным фоном в 25% случаев формировался концентрический тип ремоделирования, тогда как гипертрофические типы структурной перестройки левого желудочка встречались реже: концентрический – в 29%, эксцентрический – в 17% случаев. Нормальная геометрия встречалась у 29% пациенток в ПФП с нормальным уровнем гормонов.

Таким образом, полученные данные свидетельствуют о том, что ремоделирование левых камер сердиа у женщин с АГ в ПФП с измененным гормональным фоном протекает достоверно чаще с развитием гипертрофии миокарда левого желудочка (как с концентрическим вариантом, так и с эксцентрическим), чем у больных АГ в ПФП с нормальным уровнем гормонов (p<0.05) (табл. 2). Можно предположить, что имеющиеся различия в частоте формирования гипертрофических типов ремоделирования у женщин с различным уровнем эстрадиола. ФСГ в сыворотке крови, прежде всего, обусловлено имеющим место при дефиците эстрадиола, избытке ФСГ увеличением активности прессорных влияний на артериальное русло, следствием которого является рост общего периферического сопротивления, увеличение постнагрузки и формирование преимущественно концентрического варианта ГМЛЖ.

Как видно из данных, представленных в таблице 3, имеющаяся у пациенток с АГ в ПФП с измененным уровнем гормонов систолическая дисфункция, наличие которой подтверждают достоверно большие, чем в 1 группе значения ФС (p< 0,01), при достоверно больших, чем в 1 группе значениях УО (p< 0,001) и КСМС (p< 0,001), может развиваться как следствие выраженной гипертрофии миокарда левого желудочка, которой сопутствует разреженность капиллярной сети. Это может приводить к развитию и прогрессированию миокардиальной недостаточности, о чем косвенно свидетельствуют более низкие значения ИСИР (p<0.05) и более высокие - КСМС (p<0,05) у лиц с АГ в ПФП с измененным гормональным фоном по сравнению с больными АГ в тот же период и нормальным гормональным фоном.

Таблица 3 Показатели систолической функции левого желудочка у женщин с АГ в ПФП с нормальным и измененным уровнем гормонов

Параметр	Группа I	Группа II	P 1-2
КДО, мл/м ²	93,55+2,52	114,93+0,45	<0,001
ФС,%	36,56+0,41	38,73+0,84	<0,01
ФВ,%	69,14+0,41	. 69,62+0,93	Нд
Уои,мл/м2	35,84±0,74	40,79+1,301	<0,001
Ао инт. потока,м	0,22±0,005	0,188+0,003	<0,01
Трансаорт градиент,Мм. рт. ст.	4,24±0,148	4,47+0,146	Н.д.
КСМС, дин/см	117,24±4,53	120,08+1,12	<0,05
ИСИР, ед.	163,24±13,27	135,71±17,74	<0,001

Значения показателей, характеризующих диастолическую функцию левых отделов сердца, у пациенток с АГ в двух группах существенно отличались между собой и свидетельствовали о диастолической дисфункции во 2 группе (табл. 4). Достоверное уменьшение (p<0,001) DT_E во 2 группе свидетельствует об увеличении жесткости миокарда левого желудочка у данной категории больных. Подтверждением этому могут служить и достоверно большие (p < 0,001) значения во 2 группе таких показателей жесткости миокарда, как КДД и КДНС $_{DK}$.

Таблица 4 Показатели диастолической функции левых камер сердца у женщин с АГ в ПФП с нормальным и измененным уровнем гормонов

Параметр	Группа І	Группа II	P 1-2
E, m/c	0,84±0,014	0,68±0,004	<0,001
A, m/c	0,61±0,019	0,62±0,009	Н.д.
Интеграл Е	0,14±0,003	0,099±0,001	<0,001
Интеграл А.	0,08±0,002	0,08±0,02	Н.д.
ИнтА/ИнтЕ,ед	0,65±0,02	0,85±0,013	<0,001
DT E,c	0,18±0,02	0,14±0,04	<0,001
ВИР,мс	66,45+0,85	106,44±0,835	<0,001
КДД,ммртст	10,43±0,37	13,92±0,22	100,0>
КДНСлж, дин/см2	12,25±0,50	16,79±0,82	<0,001

Достоверные различия в исследуемых группах получены в значениях интеграла Е, которые оказались достоверно ниже у женщин с АГ в ПФП с измененным уровнем гормонов в сравнении (p< 0,001) с больными АГ с нормальным уровнем гормонов. Это свидетельствует о нарушении процесса расслабления миокарда

левого желудочка, вследствие чего происходит замедление снижения давления в полости левого желудочка в раннюю диастолу, при этом в более выраженной форме при АГ в тот же период и измененным гормональным фоном. О снижении активной релаксации говорит и достоверное повышение ВИР во 2 группе в сравнении с 1 группой (p<0,001).

Различия были достоверны (p<0,001) в исследуемых группах и в значениях отношения интегралов А и Е, тесно коррелирующего с конечным диастолическим давлением в левом желудочке, часто используемого для оценки раннего и позднего диастолического наполнения левого желудочка. Этот показатель оказался достоверно выше у пациенток с АГ в ПФП и с измененным уровнем гормонов в сравнении с группой больных АГ с нормальным уровнем гормонов (p < 0,001).

Таким образом, принимая во внимание полученные различия в ряде значимых показателей диастолической функции миокарда левого желудочка, можно сделать предположение о диастолической дисфункции левого желудочка у пациенток с АГ в ПФП с измененным гормональным фоном. Она рассматривается как следствие снижения релаксации и повышения жесткости миокарда левого желудочка. Вместе с тем, женские половые гормоны оказывают благоприятное влияние на тонус сосудов и АД, а дефицит половых стероидов способствует повышению активности прессорных влияний на сосуды и является одним из факторов риска развития ремоделирования левых камер сердца. Этим, по-видимому, можно объяснить более высокий уровень АД у женщин в данном периоде, отягошенным изменением половых гормонов, появление ремоделирования левых отделов сердца.

Представленные в статье данные важны для практического врача, так как позволяют прогнозировать течение АГ, изменения в структурно-функциональном состоянии левых камер сердца в ПФП и следующие периоды жизни женщины - период менопаузы и постменопаузы. Учитывая тот факт, что концентрический тип гипертрофии ЛЖ является самостоятельным фактором риска быстрого развития различных осложнений, имеющих нередко фатальное значение, в том числе. ХСН, ишемии миокарда, протекающей в виде ее безболевого варианта и прогностически значимых желудочковых дисритмий.

Выводы

- 1. Снижение уровня эстрадиола и повышение ФСГ в сыворотке крови у женщин с АГ в ПФП может являться одним из факторов, отягощающих процесс ремоделирования левых отделов сердца.
- 2. У пациенток с АГ в ПФП и с измененным гормональным фоном достоверно чаще регистрируется развитие гипертрофических вариантов ремоделирования миокарда левого желудочка в сравнении с больными АГ в ПФП с сохраненным уровнем исследуемых половых гормонов.
- 3. У пациенток с АГ в ПФП при наличии дисбаланса половых гормонов имеет место диастолическая дисфункция левого желудочка с нарушением, как жесткости миокарда левого желудочка, так и его активного расслабления.

ЛИТЕРАТУРА

- 1. Сметник В.П., Кулакова В.И.//Руководство по климактерию. -Москва.-2002.-687 с.
- 2. Караченцев А.Н., Сергеев П.В. Вазоактивные эффекты половых гормонов //Пробл. Эндокринологии.-2001.- № 43.-С. 45-53.
- 3. Скорнякова М.Н., Сырочкина М.А. Гипоменструальный синдром //Руководство для врачей.- Екатеринбург.-2006.-236 с.
- 4. Люсов В.А., Евсиков Е.М., Рудаков А.В. Роль нарушений баланса половых гормонов и гонадотропинов в развитии и течении эссенциальной гипертензии у женщин //Российский мед.жур-л.-1999,-№3.-С. 5-9.
- Koren M.J. Devereux R.B., Casale D.N. et al. Relation of left ventricular mass and heometry to mobility and mortality in uncomplicated women essential hypertension //Ann Int Med – 1999/-vol 144-P.345-352
- 6. Васюк Ю.А, Козина А.А., Ющук Е.Н., Нестерова Е.А., Садулаева И.А. Особенности систолической функции и ремоделирования у больных с артериальной гипертонией //Журнал Сердечная недостаточность.- 2003.- Т.4.- № 2.- С. 79-80.
- Грачев А.В., Аляви А.Л., Ниязова Г.У., Мостовщиков С.Б., Масса миокарда левого желудочка, его функциональное состояние и диастолическая функция у больных с артериальной гипертонией при различных эхокардиографических типах геометрии левого желудочка сердца //Кардиолгия.-2000.-№3.-с.31-36.
- 8. Devereux R.B., Savage D.D., Sachs I.I., Laragh J.H. Relation of hemodynamic load to left ventricular hypertrophy and performance in hypertension // J. Am. Cardiol. 1999.-Vol.51.-P.171-176.
- 9. Рыбакова М.К., Алехин М.Н., Митьков В.В. Практическое руководство по ультразвуковой диностике. Эхокардиография. М.: Издат.дом Видар-М, 2008.-512 с.
- Lang R., Biering M., Devereux R.B. et al. Recommendations of chambers quantification //Eur.J.Echocardiography. 2006.-V.7.-N.2.-P.79.-108.