

Рисунок 1. Распределение типов геометрии ЛЖ у пациентов исследованных групп.

ВЛИЯНИЕ ГИПЕРСИМПАТИКОТОНИИ НА СТРУКТУРУ И ФУНКЦИЮ СЕРДЦА ЗДОРОВЫХ ЛИЦ

Хурс Е.М., Евсина М.Г., Поддубная А.В., Смоленская О.Г.

Вегетативная нервная система (ВНС) играет важную роль в функционировании всего организма и сердечно – сосудистой системы (ССС), в частности. Одним из современных методов оценки состояния вегетативной регуляции ССС является анализ вариабельности ритма сердца (ВРС) [1, 2, 3, 4].

Физиологические механизмы анализа ВРС основаны на том, что последовательный ряд кардиоинтервалов отражает регуляторные влияния на синусно-предсердный узел сердца различных отделов ВНС — симпатической (СНС) и парасимпатической (ПСНС) [5]. У здоровых влияние обоих отделов

 $_{\rm BHC}$ на сердце уравновешено (вегетативный баланс), однако при стрессе, $_{\rm физической}$ нагрузке происходит нарушение данного равновесия [6, 7, 8].

В настоящее время существует множество работ, посвященных роли негативного влияния дисфункции ВНС на процессы структурнофункциональной перестройки сердца при различных сердечно—сосудистых заболеваниях [9, 10, 11, 12, 13]. Однако, вегетативный дисбаланс может встречаться и у здоровых лиц. Работы, оценивающие влияние гиперсимпатикотонии на структуру и функцию здорового сердца в отсутствии патологии, малочисленны [14].

Целью нашего исследования стало изучение влияния гиперсимпатикотонии на структуру и функцию сердца здоровых лиц.

Материалы и методы исследования

В открытое проспективное исследование были включены 50 практически здоровых людей (11 мужчин и 39 женщин, средний возраст 35,4±10,2 года), у которых отсутствовали сердечно-сосудистые заболевания.

Критериями исключения были любые заболевания внутренних органов и систем, выявленные с помощью клинических и инструментальных методов исследования, ИМТ больше 25 кг/м² и менее 18 кг/м², а также экстракардиальные факторы, оказывающие влияние на ВНС: курение, элоупотребление алкоголя, стресс, физические перегрузки.

С целью оценки ВРС и структурно – функционального состояния сердца пациентам проводилось бифункциональное суточное мониторирование АД и ЭКГ с использованием монитора CardioTens-01 (Венгрия), трансторакальная эхокардиография (ЭхоКГ) на аппарате Aloka 4000 (Япония). В день исследований включенные лица не употребляли никотин, алкоголь, кофенн, не занимались спортом и не выполняли тяжелых физических нагрузок. Обе методики и анализ полученных результатов, проводился на основании рекомендаций Американского общества специалистов по ЭХОКГ и рекомендаций Европейского общества кардиологии и Северо-Американского Электрофизиологического общества [15, 16].

Анализировали следующие показатели ВРС: 1. временные параметры BPC: SDNN (мс) - стандартное отклонение от средней продолжительности R-R интервалов (отражает общую вариабельность ритма сердца, обусловленную всеми периодическими составляющими сердечного ритма для данной записи. зависит от воздействия как симпатической, так и парасимпатической нервной системы); HRVti - треугольный (триангулярный) индекс - общее количество R-R интервалов, деленное на высоту гистограммы всех R-R интервалов, измеренную по дискретной шкале с шагом 1/128 сек (характеризует также общую BCP); rMSSD (мс) - квадратный корень из средней суммы квадратов разности между соседними R-R интервалами (используется преимущественно для оценки высокочастотного (вагусного) компонента спектра); SDANN (мс) стандартное отклонение средних значений интервалов R-R, вычисленных по 5минутным промежуткам (используется преимущественно ддя низкочастотного (симпатического) компонента спектра). 2. спектральные параметры BPC: TP (мс2) - общая мошность колебаний ЧСС в диапазоне от 0,005 до 0,8 Γ ц (полный спектр частот); LF (мс²) – мощность колебаний ЧСС в низкочастотном диапазоне от 0,05 до 0,15 Гц (низкочастотная составляющая спектра); HF (мс²) – мощность колебаний ЧСС в высокочастотном диапазоне от 0.15 0.4 Гп (высокочастотная составляющая спектра); LF/HF (нормализованные единицы) – индекс симпатовагального взаимодействия.

Общепринятым показателем, отражающим состояние вегетативного баланса, является индекс симпатовагального взаимодействия - LF/HF, однако нет стандартизованных диапазонов нормы, в литературных источниках данные весьма вариабельны [1, 16]. В нашей работе при LF/HF меньше 2,5 ед. соотношение симпатической и парасимпатической активности ВНС считалось сбалансированным (группа 1, п=24), при значениях больших или равных 2,5 - подтверждался дисбаланс ВНС (группа 2, п=26) (смотри таблицу 3).

Также был проведен анализ суточного профиля АД, который включал: систолического артериального давления (cpCAД), диастолического артериального давления (cpДAД), частоты сердечных сокращений (cpЧCC).

анализе ЭхоКГ оценивались следующие морфометрические параметры ЛЖ: толщина межжелудочковой перегородки (ТМЖП), толщина залней стенки левого желудочка в систолу и диастолу (ТЗС ЛЖс и ТЗС ЛЖд) соответственно), высота левого желудочка в систолу (Нс) и высота левого желудочка в диастолу (Нд), конечный систолический и диастолический размеры (КСР и КДР) левого желудочка, конечный диастолический объем (КПО) левого желудочка, конечный систолический объем (КСО) левого желудочка, фракция выброса (ΦB) и ударный объем (YO) левого желудочка. **Диастолическая** функция левого желудочка оценивалась с помощью импульсной допплер - ЭхоКГ. По характеру трансмитрального потока определены пики Аі (максимальная скорость позднего потока в систолу предсердий) и Еі (максимальная скорость потока раннего наполнения левого желудочка), время изгнания потока Ai - ETa, время изгнания потока Ei - ETe, время замедления раннего наполнения - DECT, время изоволюмического расслабления – IVRT, время изоволюмического сокращения – IVSII. Масса мнокарда левого желудочка (ММЛЖ) и ее индексы (ММЛЖ индексированная к площади поверхности тела - ИММЛЖ; ММЛЖ индексированная к росту -*ИММЛЖР*), относительной толщины стенки (*OTC*), индексированные объемы ЛЖ (КДОИ, КСОИ, УОИ) определялись стандартными методами [19-22]. Рассчитывались по формулам: индексы сферичности: ИСс = КСР/Нс, ИСд = КДР/Нд: миокардиальный crpecc: MCc =0.98×0.334×КСР×САД/ТЗС ЛЖс×(1+[T3C ЛЖс/КСР]), $MC\partial = 0.98×0.334×КДР×ДАД/Т3C ЛЖд×(1+[T3C$ ЛЖд/КДР]); интегральные индексы ремоделирования: ИСИР = ФВ/ИСд, ИДИР DecT/ИСд; конечно-диастолическое давление и напряжение стенки ЛЖ: КДД = $1,06 + 15.15 \times (\text{Ai} \times \text{ET A})/(\text{Ei} \times \text{ET F})$, $\mathcal{K}\mathcal{I}\mathcal{H}\mathcal{C} = \text{ET A} \times \mathcal{K}\mathcal{I}\mathcal{P}/4 \times T3\mathcal{C}$ ЛЖд. Также рассчитывались показатели, характеризующие адекватность систолической функции ЛЖ - $\Phi B/MCc$ и $\Phi B/MCd$; MCc/KCOU и MCd/KIIOU.

Статистическая обработка результатов исследования проводилась с использованием компьютерной программы Statistica for Windows 6.0 (StatSoft Inc., США).

Результаты и их обсуждение:

У здоровых лиц часто выявляется нарушение ВРС, которому не придается клинической значимости. Для нас представляло интерес исследование влияния вегетативного дисбаланса на структурно-геометрические особенности и закономерности функционирования сердца.

Мы исследовали здоровых лиц (n=50), обследованных в отношении исключения возможных заболеваний сердца и иных органов и систем. Несмотря на отсутствие органических заболеваний сердечно-сосудистой системы и экстракардиальных влияний, пациенты различались по параметрами вагосимпатического баланса. По значению индекса симпатовагального взаимодействия (LF/HF), изученные пациенты были разделены на 2 группы: группа 1 (LF/HF меньше 2,5, n=24), и группа 2 (LF/HF больше 2,5, n=26).

Сравниваемые группы были сопоставимы по основным клиникодемографическим характеристикам (табл.1).

Спектральный анализ ВРС показал статистически значимое снижение высокочастотного компонента спектра (НF за сутки, в дневной и ночной периоды) в группе 2 в сравнение с группой 1 (табл.2). Показатели ТР и LF во всех периодах не имели существенных различий.

При анализе временных показателей ВРС в сравниваемых группах были получены следующие результаты (табл.3). Несмотря на то, что в целом значения параметров ВРС в группах находились в диапазоне нормы, наблюдалось статистически значимое снижение показателей общей ВРС (SDNN за сутки и в ночной период) и триангулярного индекса (HRVti в ночной период), высокочастотной составляющей спектра (RMSSD за все периоды) у лиц с преобладанием тонуса СНС (группа 2).

По данным литературы, именно SDNN и HRVii являются наиболее значимыми прогностическими индексами BPC, связанными с частотой кардиоваскулярных событий, продолжительностью жизни у больных с сердечно-сосудистыми заболеваниями [1, 4, 16]. Логично полагать, что и для здоровых лиц изменения данных параметров небезразличны. Снижение

высокочастотной составляющей спектра (RMSSD) отражает снижение парасимпатической активности, особенно это выражено в ночной период, когда должно происходить физиологическое усиление вагусных влияний [4,10, 14].

Таким образом, в группе с вегетативным дисбалансом происходит снижение общей ВРС преимущественно за счет ослабления парасимпатических влияний. Нашей задачей было выяснить, каким образом данный дисбаланс отражается на структурно-функциональном состоянии сердца.

Ультразвуковые характеристики сердца в сравниваемых группах при рутинном обследовании практически не различались за исключением двух парамстров - КСО и КСР, значения которых находились в пределах нормы, однако их величины были статистически больше в группе с вегетативным дисбалансом, в сравнении с группой без него (табл.4).

Наибольший интерес представляют результаты, полученные при анализе расчетных параметров ремоделирования левого желудочка (ЛЖ) в сравниваемых группах (табл.5). Получены достоверные различия двух параметров: миокардиальный систолический стресс (МСс) и отношение фракции выброса систолическому миокардиальному стрессу (ФВ/МСс).

МС характеризует силу натяжения волокон миокарда на единицу поперечного сечения стенки ЛЖ и является количественным отражением величины пред - и постнагрузки [15]. Оказалось, что у здоровых лиц с нарушенным вегетативным балансом показатель МСс достоверно выше (р=0,009).

Соотношение ФВ/МСС, отражающее адекватность систолической функции сердца при формировании выброса [15], также оказалось ниже в группе 2 по сравнению с группой 1. То есть, нарушается «оптимальность» напряжения стенки при формировании выброса в ЛЖ. Таким образом, объяснимым становится у превалирование конечно-систолического размера и объема ЛЖ в данной группе, которое имеет компенсаторный характер.

Таким образом, весьма значимым представляется то, что даже у здоровых лиц нарушение баланса ВНС может приводить к повышению нагрузки на ЛЖ, компенсаторному увеличению объема ЛЖ в систолу.

При анализе зависимости параметров ремоделирования сердца от индексов BPC обнаружены умеренные корреляции между LF/ Hf и MCc (r=0,39; p=0,005), LF/ Hf и Φ B/MCc (r=-0,36; p=0.01), подтверждающие полученные при сравнении групп закономерности.

Нами выявлена умеренная отрицательная связь SDNN и ЧСС ср (г=-0,41; р=0,004. Возникает логичный вопрос, нет ли связи выявленных нарушений структурно-геометрических свойств ЛЖ и нарастанием ЧСС, сопряженным с гиперсимпатикотонией. Действительно, существует множество работ, отражающих связь между вегетативным дисбалансом и ЧСС: чем выше тонус СНС, тем выше ЧСС [6, 17, 18, 19]. Однако, обращает на себя внимание тот факт, что в нашем исследовании, несмотря на преобладание тонуса СНС в группе 2, значимых различий между группами по средней ЧСС выявлено не было. Это исключает возможное влияние частоты сердечных сокращений на параметры ремоделирования сердца в сравниваемых группах

Выволы:

- 1. Вегетативный дисбаланс влияет на структурно-функциональные характеристики левого желудочка даже у здоровых лиц.
- Нарушение вегетативного баланса оказывает влияние на структурногеометрические параметры сердца в отсутствии сердечно – сосудистой патологии и вне зависимости от частоты сердечных сокращений.
- Преобладание тонуса симпатической нервной системы у здоровых лиц приводит к напряжению адаптивных характеристик работы левого желудочка, отражающихся нарастанием миокардиального стресса и нарушением оптимизации соотношения нагрузки выбросу.
- 4. Вегетативный дисбаланс у здоровых лиц должен рассматриваться в комплексе предикторов развития сердечно-сосудистых заболеваний.

Таблица 1 Клинико-демографическая характеристика сравниваемых групп

	Группа 1 LF/HF	Группа 2	P
	меньше 2,5	LF/HF больше	
	(n=24)	2,5	
		(n=26)	
Возраст, лет	34,8±9,3	36,0±11,1	0,7
Пол, ж/м	2/21	8/18	0,1
ИМТ, ед.	21,4±3,3	22,9±2,5	0,06
Среднесуточное САД, мм	109,9±8,6	112,0±6,0	0,3
рт.ст.			ļ
Среднесуточное ДАД, мм	69,6±6,3	71,0±5,4	0,4
рт.ст.			
Среднесуточная ЧСС, в	76,2±7,8	78,4±9,5	0,4
мин			

Таблица 2 Характеристика спектральных показателей ВРС в сравниваемых группах

Показатель		Группа I	Группа 2	P
BPC		LF/HF меньше 2,5	LF/HF больше 2,5	
		(n=24)	(n=26)	
TP, Mc ²	Сутки	3885,5 (2412;4799)	2958 (2182;4400)	0,5
	День	3085,5 (2412;4799)	2660 (2037;4131)	0,8
	Ночь	4814 (2717;6057,5)	3180 (2438;4980)	0,3
LF, mc ²	Сутки	1055,5 (592,5;1566)	890,5 (469;1672)	0,8
	День	861 (548,5;1327)	805,5 (434;1283)	0,8
	Ночь	1117,5 (603,5;1784,5)	934 (1594;1331)	0,5
HF, Mc ²	Сутки	586 (304;898,5)	235 (150;376)	0,001
	День	353 (173;695)	187,5 (116;296)	0,02

	Ночь	928,5 (441,5;1293,5)	226 (122;417)	0,001
LF/HF, ед.	Сутки	2,05 (1,3;2,3)	3,7 (3;4)	<0,001
	День	2,3 (1,65;3,25)	4,1 (3,5;5,5)	<0,001
	Ночь	1,55 (0,95;1,95)	2,9 (2,1;3,7)	<0,001

Таблица 3 Характеристика временных показателей ВРС в сравниваемых группах

Показате		Группа 1	Группа 2	р
ль		LF/HF меньше	LF/HF больше	
BPC		2,5 (n=24)	2,5 (n=26)	
SDNN,	Сутки	167 (148;187)	145 (136;161)	0,03
мс	День	126 (110;152)	117 (104;143)	0,1
MO	Ночь	116 (97;161)	97 (80;109)	0,009
HRVti,	Сутки	41 (31;52,5)	40 (33;51)	0,8
ед.	День	34 (24;40,5)	31,5 (25;43)	0,9
	Ночь	26 (22;28)	22 (18;27)	0,04
RMSSD,	Сутки	37 (30;52)	28 (20;37)	0,006
мс	День	33 (25;46)	26 (18;34)	0,03
	Ночь	50,5 (40;60)	30,5 (25;52)	0,001
SDANN,	Сутки	160,5	152,5 (127;175)	0,1
		(143;196,5)		
	День	128 (97,5;167,5)	117 (104;143)	0,5
	Ночь	80,5 (66,5;129,5)	97 (80;109)	0,07

Таблица 4 Характеристики здорового сердца в сравниваемых группах

	Группа I	Группа 2	P
	LF/HF меньше 2,5	LF/HF больше	
	(n=24)	2,5 (n=26)	
кдо	89 (79,5;103)	102 (85;116)	0,06
ксо	25,5 (23,5;30,5)	32 (27;37)	0,03
УО	64 (54;69,5)	70,5 (57;82)	0,15
Нс	57 (54,5;63)	60 (55;66)	0,26
Нд	69 (64,5;74,5)	72 (65;75)	0,4
КСР	26 (25;28)	29 (28;31)	0,006
КДР	44,5 (42;47)	47 (43;50)	0,06
ΦВ	69,5 (66,5;73,5)	67,9 (64,4;71)	0,2
IVSД	7,5 (7;8)	8 (7;8)	0,35
ТЗС ЛЖд	8 (7;8)	8 (7;9)	0,8
ТЗС ЛЖс	14 (13;14,5)	13 (12;14)	0,3
Ei	0,79 (0,74;0,915)	0,78 (0,65;0,86)	0,2
Ai	0,56 (0,5;0,64)	0,5 (0,48;0,6)	0,1
ЕТе	229 (206,5;249)	221 (206;238)	0,5
ЕТа	143 (139,5;156)	135 (128;149)	0,3
IVRT	69 (64;73)	67,5 (64;73)	0,9
DECT	199 (177;218)	199 (159;214)	0,3
ММЛЖ	133,9 (116;158,9)	153	0,1
		(125,5;174,8)	
иммлж	85 (74;98)	871 (76;99,6)	0,6
ИММЛЖР	35 (31;42,8)	36,4 (32,3;43,8)	0,5
OTC	0,4 (0,3;0,4)	0,3 (0,3;0,4)	0,7
уои	39,9 (35,6;43,8)	40,5 (34;46,6)	0,9

Таблица 5 Параметры ремоделирования ЛЖ сердца в сравниваемых группах

	Группа I	Группа 2	р
	LF/HF меньше	LF/HF больше 2,5	
	2,5 (n=24)	(n=26)	
ИСС	0,46(0,42;0,5)	0,5(0,43;0,53)	0,5
ИСД	0,6(0,6;0,7)	0,6(0,6;0,7)	0,6
MCC	114,8(104,7;124,4)	124,8(120,4;130,9)	0,009
МСД	162,3(146,9;175,4)	168,4(149,3;187,7)	0,3
кдд	7,3(6;9,8)	8(6,3;8,9)	0,8
кднс	10,5(8,4;14,9)	11,5(10,2;12,9)	0,7
ИСИР	106,5(99,2;120,4)	104(98;112)	0,3
идир	295,9(281,6;340,6)	300,8(241;333,2)	0,4
кдои	56,81(50,7;63,5)	57,9(53;65,1)	0,6
ксои	16,5(14,;19,4)	17,5(16,5;21,6)	0,2
мсс/ксои	6,8(5,7;7,9)	7(6;7,6)	0,4
мсд/кдои	2,7(2,4;3,4)	2,8(2,6;3,2)	0,8
ФВ/МСС	0,6(0,5;0,7)	0,5(0,5;0,6)	0,007
ФВ/МСД	0,4(0,4;0,5)	0,4(0,35;0,45)	0,1

РАННИЕ МАРКЕРЫ ИБС В ПАТОЛОГИЧЕСКОЙ ПЕРЕСТРОЙКЕ СЕРДЦА ПРИ НАРУШЕНИЯХ УГЛЕВОДНОГО ОБМЕНА

Хурс Е.М., Поддубная А.В., Евсина М.Г., Смоленская О.Г.

Введение. Сахарный диабет (СД) рассматривается как заболевание с высоким кардиоваскулярным риском, связанным с ранним развитием ишемической болезни сердца (ИБС) и ее осложнений [1]. ИБС встречается в 2–4 раза чаще у