Внешнепанкреатические нарушения при метаболическом синдроме — генетическая предопределенность?

А. Н. Дмитриев

ГОУ ВПО Уральская государственная медицинская академия Росздрава, г. Екатеринбург

Резюме

Цель исследования: установить частоту нарушений внешнепанкреатической секреции при метаболическом синдроме (MC) и соотнести ее с риском развития СД 2 типа у пациентов с установленными генными вариантами.

Зондовым исследованием дуоденального аспирата 134 пациентов с МС установлены в качестве наиболее типичных снижение внешнепанкреатической секреции (у 86,3%) и диспанкреатизм (у 11,2%), частота которых превышает риск развития СД 2 типа (от 5 до 50%) у пациентов с установленными генными вариантами. Высказывается предположение, что внешнепанкреатические нарушения при МС, как и СД 2 типа, имеют сходные механизмы наследования: комбинация генных вариантов определяет повышенную готовность их развития, а внешние факторы (ведение нездорового образа жизни) приводят к реализации выявленных нарушений. Высказывается предположение о возможной взаимосвязи внешнепанкреатической недостаточности и экспрессии генов в экзокринной ткани поджелудочной железы, влияющих на биосинтез и секрецию инсулина и/или глюкагона.

Ключевые слова: внешнепанкреатические нарушения, метаболический синдром, генетическая предопределенность.

Введение

Изменения в сердечно-сосудистой системе (артериальная гипертензия и ИБС) при метаболическом синдроме (МС) относят к числу важнейших и прогностически наиболее неблагоприятных его составляющих и этим объясняется превалирующая кардиологическая направленность научных исследований. В тоже время известно, что непосредственное отношение к развитию МС имеет поджелудочная железа, функциональные резервы инсулярного аппарата которой определяют развитие и других составляющих МС, в том числе интолерантности к глюкозе и сахарного диабета (СД) 2 типа. Известно также о наличии генетической предрасположенности к СД 2 типа и полигенности наследования последнего: выявлено несколько геномных регионов, которые непосредственно связаны с СД 2 типа, идентифицирован сегмент в 10 хромосоме, протестирован полиморфизм PPARG и KCNJ11 в качестве факторов риска развития СД 2 типа. Более того, секвенирование локуса позволило обнаружить ген, который чаще всего связан с развитием диабета 2 типа — TCF7L22, а исследованием одноцепочечных нуклеотидных последовательностей установлены полиморфизмы (PPARG, KCNJ11.

TCF7L2, CDKAL1, CDKN2A/CDKN2B, IGF2BP2, HHEX/KIF11/DE, SLC30A8, FTO, GCKR, TCF, WFS1, JAZF1, CDC123/CAMK1D, TSPAN8/LGR5, THADA, ADAMTS9 и NOTCH2), которые связаны с развитием СД 2 типа и рассматриваются и как маркерные, и как причинные генные варианты [1].

Новым результатом исследования генотипов и фенотипов является обнаружение того, что большинство генов, связанных с развитием диабета 2 типа, экспрессируются в экзокринной ткани поджелудочной железы и влияют на биосинтез и секрецию инсулина и/или глюкагона [2].

В этой связи несомненный интерес представляет исследование функционального состояния экзокринного отдела поджелудочной железы и установление частоты и характера внешнепанкреатических нарушений у больных с МС. Это представляется актуальным еще и потому, что состояние органов пищеварения и их роль в развитии МС до настоящего времени мало известны клиницистам [3, 4] (Отсутствием таких исследований объясняются отдельные ссылки на работы второй половины XX в.).

Цель исследования: установить частоту нарушений внешнепанкреатической секреции при метаболическом синдроме и соотнести ее с генетическим риском развития СД 2 типа у пациентов с установленными генными вариантами.

A. Н. Дмитриев — к. м. н., доцент кафедры внутренних болезней №1.

Материал и методы

Работа выполнена на 134 пациентах в возрасте 34±8,7 лет с МС (Диагностика МС базировалась на критериях Международной федерации диабета — IDF (2005)), не имевших клинических признаков патологии пищеварительной системы и сахарного диабета (Исключение из числа обследовавшихся пациентов с СД 2 типа было продиктовано риском утяжеления процесса, сопряженным с зондовым исследованием панкреатической секреции, предполагающим неизбежность нарушения режима питания). Контрольная группа была представлена 30 практически здоровыми лицами сопоставимого возраста с нормальной массой тела.

Внешнесекреторная функция поджелудочной железы оценивалась путем зондового исследования дуоденального аспирата динамическим методом М. М. Губергрица и Б. И. Гольдитейна. В качестве стимулятора панкреатической секреции применялся 0,5% раствор соляной кислоты. Исследовался собранный в течение 30 минут спонтанно отделявшийся (базальный), а затем стимулированный панкреатический секрет, собранный за три 30-минутных интервала после внутризондового введения 0.5% раствора соляной кислоты. Непосредственно после получения дуоденального аспирата определялись его количество, бикарбонатная шелочность (метод обратного титрования по Hennig и Grass), суммарная протеолитическая активность (метод Фульда-Гросса-Михаэлиса), амилолитическая активность по Каравею и липолитическая активность по Бонди в модификации М. С. Рожковой. Для суждения о его щелочности и наличии примеси желудочного сока проводилась рН-метрия. При оценке панкреатической секреции, наряду с классическим исследованием кривых соко-, бикарбонатовыделения и концентрации ферментов, использовались и такие количественные показатели, как минутное напряжение секреции, минутный дебит амилазы, липазы, трипсина и часовой дебит бикарбонатов. При

интерпретации результатов использовались следующие определения: экзокринная функция нормальная, незначительное снижение (уменьшение величины одного из исследовавшихся показателей), умеренное снижение (уменьшение величины 2-3 показателей), значительное снижение (уменьшение 4-5 показателей), повышение экзосекреции (сверхнормативное увеличение одного и более показателей), диспанкреатизм (противоположно направленное изменение двух и более показателей). Наряду с этим оценивалось отношение величин названных показателей стимулированного секрета к таковым в базальном соке, условно названное «коэффициентом реактивности» (КР) железы. Этот показатель позволял оценить характер ответной реакции железы на раздражитель и косвенно судить о потенциальных ее возможностях. Для характеристики ответной реакции на раздражитель были введены понятия: реактивность повышенная, нормальная, сниженная, диссоциированная реактивность, или дисреактивность (повышение коэффициента по одним показателям и снижение по лругим).

Статистическая обработка материала проведена с использованием пакета прикладных программ «Statistica 6.0 for Windows» и «SPSS 13 for Windows».

Результаты и их обсуждение

Сравнение показателей минутного напряжения секреции, минутного дебита ферментов и часовой продукции бикарбонатов базального и стимулированного секрета показало, что солянокислая стимуляция поджелудочной железы лиц контрольной группы сопровождалась увеличением секреции и функционального резерва, о чем свидетельствовало статистически значимое увеличение каждого из исследовавшихся показателей (р<0,05-0,001). Иной была реакция внешнесекреторного отдела железы пациентов с МС. Она характеризовалась не только отсутствием достоверного прироста сек-

Таблица 1. Показатели панкреатической секреции пациентов МС и лиц контрольной группы ($M\pm\sigma$)

Показатели панкреатической секреции	Базальны	ый секрет	Стимулир	ов. секрет	Коэффициент реактивности		Р (сравнение с контр.)		
	контр.	мс	контр.	мс	контр.	МС	баз. секрет	стим. секрет	КР
Объем (мл/мин)	1,19±0,51	0,82±0,58	1,75±0,84	0,72±0,44	1,71±0,98	1,13±0,67	<0,001	<0,001	<0,001
Амилаза (усл. ед/мин)	11,62±5,66	8,19±6,13	15,82±10,3	5,98±3,47	1,61±1,07	1,13±0,87	<0,01	<0,001	<0,05
Липаза (усл. ед/мин)	3,37±1,56	2,79±1,84	5,37±2,27	2,54±0,92	1,56±0,94	1,16±0,86	<0,001	<0,001	<0,05
Трипсин (усл. ед/мин)	237,24±191,65	344,21±326,32	415,36±292,37	309,30±275,04	5,59±5,03	1,11±0,93	>0,05	>0,05	<0,001
Бикарбонатная щелочность (мэкв/час)	0,92±0,79	0,30±0,37	2,92±1,64	0,29±0,37	1,48±0,66	0,97±0,67	<0,001	<0,001	<0,001

Таблица 2. Состояние парциальных функций поджелудочной железы у пациентов с МС

5	Снижение		Норма		Повышен.		Bcero	
Парциальные функции	абс.	%	абс.	%	абс.	%	абс.	%
Продукция секрета	102	76,1	32	23,9	0	0	134	100
Продукция амилаза	70	52,2	64	47,8	0	0	134	100
Продукция липазы	90	67,2	39	29,1	5	3,7	134	100
Продукция трипсина	48	35,8	70	52,2	16	11,9	134	100
Продукция бикарбонатов	123	91,8	11	8,2	0	0	134	100

Таблица 3. Парциальная секреторная активность поджелудочной железы пациентов с МС

Парциальная секреторная	Снижение		Норма		Повышение		Всего	
активность железы	абс.	%	абс.	%	абс.	%	абс.	%
Продукция секрета	103	76,9	31	23,1	0	0	134	100
Продукция амилаза	44	32,8	75	56,0	15	11,2	134	100
Продукция липазы	43	32,1	65	48,5	26	19,4	134	100
Продукция трипсина	44	32,9	81	6 0,4	9	6,7	134	100
Продукция бикарбонатов	56	41,8	19	14,2	59	44,0	134	100

реции, но даже более низким, чем в базальном соке, уровнем амилазы (р<0,05). При последующем сопоставлении показателей внешнепанкреатической секреции контрольной и исследуемой групп было установлено, что у тучных как натощак, так и после стимуляции имело место достоверное снижение продукции бикарбонатов, жидкой части секрета и содержания в нем амилазы и липазы, более отчетливо выявлявшихся с помощью оценки КР (табл. 1).

По протеолитической активности панкреатический секрет пациентов с МС не отличался от такового у лиц контрольной группы. По-видимому, сохранность трипсинообразования в условиях нарушения обмена веществ имеет защитно-приспособительное значение и направлена как на «обеспечение организма пластическим материалом» так и на стимуляцию всасывания глюкозы, утилизация которой у тучных, как известно, затрудняется инсулинорезистентностью тканей. Последнее предположение базируется на данных Г. С. Рыбаковой с соавт. [5], установивших феномен стимуляции всасывания глюкозы под действием предшествующего белкового завтрака, а также Е. П. Топуридзе с соавт. [6], подтвердивших наличие этого феномена на контингенте тучных.

Поскольку у отдельных представителей исследуемой группы показатели секреции существенно различались, а при статистической обработке группы в целом это нивелировалось, был проведен анализ распределения отклонений парциальных функций от контрольных значений (>М±о<). Полученные при этом результаты свидетельствуют о наиболее частом нарушении секреции жидкой части секрета (у 76,1%) и бикарбонатов (в 91,8% случаев). Сни-

жение трипсинообразующей функции железы отмечено у 48 пациентов (35,8%), в то время как ее повышение — лишь в 11,9% наблюдений. Случаи с повышением липолитической активности секрета регистрировались в 3,2 раза реже, а с увеличением продукции амилазы вообще не встречались (табл. 2).

Анализ КР структур, ответственных за секрецию жидкой части панкреатического сока, ферментообразование и бикарбонатовыделение, позволил также установить снижение резервных возможностей центроацинозных и протоковых эпителиальных клеток у 41,8% и 76,9% обследованных соответственно. Об этом свидетельствовали сниженные «коэффициент объема» и «коэффициент бикарбонатовыделения» (табл. 3).

Обращало внимание, что более чем у четверти из этих пациентов имели место выявленные при фракционном дуоденальном зондировании признаки повышения тонуса сфинктера Одди или его наклонности к гипертоническим реакциям, что, как известно, отрицательно сказывается на эпителии панкреатических протоков. Что же касается потенциальных возможностей ацинарных клеток, то они были снижены лишь у трети обследованных, а у основной массы — не отличались от контрольной группы. Последнее обстоятельство позволяет предположить, что ацинарные клетки у тучных находятся в более благоприятных условиях, нежели центроацинозные и протоковоэпителиальные, что определяет различие порога их чувствительности к метаболическим нарушениям и действию других повреждающих факторов.

Был также использован третий вариант оценки состояния экзокринной функции под-

желудочной железы, основывающийся на условно принятых ее определениях. Результаты такого анализа представлены в табл. 4.

Представленные данные свидетельствуют о том, что у 83,6% обследованных внешнепанкреатическая функция была сниженной, причем у большинства из них — значительно. Вторым по частоте вариантом функциональных нарушений был диспанкреатизм, имевший место в 15 случаях из 134, что составило 11,2% от численности группы. В то же время удельный вес нормо- и гиперсекреторных состояний был примерно одинаков и определялся единицами процента (2.2% и 3% соответственно).

Исследование КР железы показало, что случаям с нормальным секреторным ответом на введение стимулятора в 100% сопутствовал высокий функциональный резерв, характерный и для диспанкреатизма (у 60%). Заслуживает внимания, что высокий функциональный резерв, как правило, имел место у пациентов с ФГСпризнаками гастродуоденита (Особенностью клиники выявленных гастродуоденальных и панкреатических нарушений было отсутствие типич-

ных для них симптомов, что, по-вилимому может быть обусловлено повышением порога болевой чувствительности вследствие раннего формирования висцеральной нейропатии, характерной для СД 2 типа) и нередко встречался среди лиц со стимулированной панкреатической гиперсекрецией. По мере прогрессирования функциональной недостаточности железы удельный вес «гиперреактивности» снижался, составляя при значительном снижении внешнесекреторной функции всего 20,5%, в то время как «гипореактивность» вырастала до 52%. Снижение функционального резерва органа было отмечено и у половины тучных со стимулированной гиперсекрецией. Выявленная особенность динамики КР указывает на функциональную истошаемость экзокринного отдела поджелудочной железы у тучных, а так как известно, что «... любая функция организма может измениться только вследствие влияния физиологических или патогенных факторов на соответствующую структуру...» [7], то можно предположить, что основой функциональной истощаемости являются дистрофические изменения экзокринной паренхимы.

Таблица 4. Частота различных вариантов панкреатической секреции и реактивности железы у пациентов с MC

Варианты секреции	Варианты	Базальн	ый секрет	Стимулиј				
рарианты секреции	реактивности	абс.	%	абс.	%	P		
Нормосекреция		6	4,5	3	2,2			
	гипореактивность			-	-	1		
	нормореактивность			-		>0,0		
	гиперреактивность			3	100	1		
	дисреактивность			-	-	1		
Незначительное снижение секреции		9	6,7	7	5,2			
	гипореактивность			4	57,1	1		
	нормореактивность			2	28,6	>0,0		
	гиперреактивность			1	14,3]		
	дисреактивность			-		1		
Умеренное снижение се креции		36	26,9	32	23,9			
•	гипореактивность			11	34,4	>0,05		
	нормореактивность			1	3,1			
	гиперреактивность			9	28,1			
	дисреактивность			11	34,4			
Значительное снижение секреции		39	29,1	73	54,5			
	гипореактивность			38	52,0	1		
	нормореактивность		,	1	2,0	<0,00		
	гиперреактивность			15	20,0	1		
	дисреактивность			19	26,0			
Гиперсекреция		12	8,9	4	3,0			
	гипореактивность			2	50,0			
	нормореактивность			1	25,0	<0,0		
	гиперреактивность			1	25,0			
	дисреактивность			-	_			
Диспанкреатизм		32	23,9	15	11,2			
	гипореактивность			3	20,0]		
	нормореактивность			2	6,7	<0,0		
	гиперреактивность			9	60,0]		
	дисреактивность			1	12,3] .		

Таблица 5. Динамика панкреатической секреции у пациентов с МС под влиянием стимулятора

Характер изменений панкреатической секреции под влиянием стимулятора	Количество случаев	%	
В ухудшение	73	54,5	
Без перемен	37	27,6	
В улучшение	7	5,2	
В норму	3	2,2	
В диспанкреатизм	10	7,5	
В повышение	4	3,0	

Диссоциация коэффициентов реактивности по отдельным показателям была преимущественно уделом лиц с умеренными и значительными гипосекреторными нарушениями, составив соответственно 31,4% и 26% от численности этих групп. Предпринятая при этом попытка выявить какие-либо клинические проявления этого феномена результатов не дала.

Предположение об истощаемости внешнесекреторного отдела поджелудочной железы у тучных подтверждалось и результатами индивидуальных исследований динамики панкреатической секреции под влиянием стимулятора (табл. 5).

Как видно из табл. 5, динамика имела негативный характер в 82,1% случаев, проявляясь у 73 больных (54,5%) трансформацией в более выраженную гипосекрецию, либо отсутствием ответа на секреторный стимул (у 27,6% тучных). Положительной она была лишь в 14 из 134 случаев (10,4%), причем нормосекреторным ответ оказался только у трех пациентов, что составило 2,2% от числа обследованных. В 10 случаях (7,5%) стимуляция железы сопровождалась диспанкреатическим ответом, основой которого в двух случаях явилась базальная гиперсекреция, а в 8 — различной степени выраженности гипосекреторные нарушения. Трансформация в стимулированную гиперсекрецию отмечена только у 4 пациентов (3%). Отмеченный в процессе индивидуальной оценки динамики факт трансформации диспанкреатизма в гипофункциональность железы у 23 больных, то есть 71,9% случаев позволяет расценивать диспанкреатизм при МС как предстадию истощения экзокринного отдела поджелудочной железы.

Примечательно, что выявленные внешнесекреторные панкреатические нарушения в подавляющем большинстве случаев клинически характеризова-лись малосимптомностью и не вызывали значимых расстройств пищеварения.

Можно предположить, что изменения, развивающиеся в экзокринной паренхиме железы (место, где экспрессируется большинство генов, связанных с развитием СД 2 типа) у пациентов с неполным МС, с одной стороны могут быть следствием увеличения апоптоза ацинарных и протоковоэпителиальных клеток (по аналогии с таковым в β-клетках островков при СД 2 типа [8,9]), а с другой — несут в себе адаптивный (защитный) характер и в какой-то степени определяют относительно невысокий риск развития СД 2 типа (от 5 до 50%) в популяции пациентов с установленными генными его вариантами.

Выводы

- 1. Функциональной особенностью экзокринного отдела поджелудочной железы у пациентов с МС является снижение внешнепанкреатической секреции (у 86,3%) и диспанкреатизм (у 11,2%), частота которых значительно превышает риск развития СД 2 типа у пациентов с установленными генными вариантами (от 5 до 50%).
- 2. Панкреатическая гипофункциональность при МС проявляется снижением продукции бикарбонатов, жидкой части секрета, а также уменьшением липо- и амилолитической его активности.
- 3. Диспанкреатизм при МС может рассматриваться как предстадия функциональной недостаточности экзокринного отдела поджелудочной железы.
- 4. Внешнепанкреатические нарушения при МС, как и классический клинический его маркер СД 2 типа, по-видимому, также наследственно предопределены и имеют сходные механизмы наследования: определенная комбинация генных вариантов способствует их развитию, а ведение нездорового образа жизни определяет их реализацию.

Литература

- Frayling T. M. Genome-wide association studies provide new insights into type 2 diabetes aetiology. Nat Rev Genet 2007; 8: 657-62.
- Pedersen O. 2007 год существенного прорыва в исследовании молекулярно-генетических основ неаутоиммунного диабета. Electronic International Journal of Metabolism by fax 02.04.2008; Vol. XI, №13.
- Перова Н. В., Метельская В. А., Оганов Р. Г. Метаболический синдром: патогенетические связи и направления коррекции. Кардиология 2001; 3: 4-9.
- Лазебник Л. Б., Звенигородская Л. А., Егорова Е. Г. Метаболический синдром с позиции гастроэнтеролога. РМЖ 2005; 26 (13): 1706-12.
- Рыбакова Г. С., Златкина А. Р., Уголев А. М. Новый метод определения резервных функциональных способностей тонкой кишки. Тер. архив 1973; 8: 44-7.
- Топуридзе Е. П., Мачханели О. И., Угулава М. III. Усвоение качественно различных углеводов у больных алиментарным ожирением. В кн.: Научные основы разработки продуктов детского диетического питания. Тез. докл. II Всесоюз. конф. М, 1976; 264-265.
- Саркисов Д. С., Гельфанд В. Б., Туманов В. П. Проблемы ранней диагностики болезней человека. Клинич. медицина 1983; 7: 6-14.
- Kloppel G., Lohr M., Habich K., et al. Surv Synth Pathol Res 1985; 4: 110-125.
- Butler A. E., Janson J., Bonner-Weir S., et al. Diabetes 2003; 52: 102-110.