УДК 579.61

ВЛИЯНИЕ СОСТАВА МИКРОБИОТЫ СПЕРМЫ НА КАЧЕСТВО ЭМБРИОНОВ ПРИ ПРОВЕДЕНИИ ЭКО

Татьяна Александровна Тяпченко¹, Паначева Евгения Александровна², Екатерина Сергеевна Ворошилина^{1,2}

¹ФГБОУ ВО «Уральский государственный медицинский университет» Министерства здравоохранения РФ

²ООО Медико-фармацевтический Центр «Гармония» (ООО МФЦ «Гармония») Екатеринбург, Россия

Аннотация

Введение. Успех применения вспомогательных репродуктивных технологий (ВРТ) зависит от качества эмбрионов. Микробиота эякулята способна влиять на качество сперматозоидов и развитие бластоцисты. Цель исследования оценить влияние состава микробиоты спермы на качество эмбрионов. Материал и методы. Исследование проводилось с применением клинического, лабораторного и статистического методов. В качестве клинического материала использовался нативный эякулят. Проводилась оценка скорости развития бластоцисты. Результаты. Выявлено 8 устойчивых кластеров, образующих микробиоту эякулята. Установлено, что при использовании в программе вспомогательных репродуктивных технологий эякулята с астенозооспермией, неудовлетворительный результат эмбриологического этапа в 53,9% случаев был ассоциирован с присутствием смеси облигатных анаэробов. Выводы. Низкая эффективность эмбриологического этапа ВРТ при использовании эякулята астенозооспермией была ассоциирована c микробиотой, представленной доминирования анаэробов облигатных смесью без определенной группы бактерий.

Ключевые слова: микробиота, сперма, ЭКО, качество эмбрионов.

IMPACT OF SPERM MICROBIOTA CONSTITUENTS ON EMBRYO OUALITY IN CONDUCTING IVF

Tatiana A. Tiapchenko¹, Evgenia A. Panacheva², Ekaterina S. Voroshilina^{1,2}

¹Ural state medical university

²Medical Center «Garmonia», Ltd

Yekaterinburg, Russia

Abstract

Introduction. The success of the use of assisted reproductive technologies depends on the quality of the embryos. The semen microbiota affects the quality of sperm and the development of blastocysts. **The purpose of the study** is to evaluate the impact of the semen microbiota on the quality of embryos. **Material and methods.** The study was conducted using clinical, laboratory and statistical methods. A native semen samples were used as clinical material. The blastocyst development rate was assessed. **Results.** 8 stable clusters forming the semen microbiota have been identified. It was established that the unsatisfactory result of the embryological stage was associated with the presence of a mixed obligate anaerobes in 53,9% of cases with the use with asthenozoospermia semen samples in the program of assisted

reproductive technologies (ART). **Conclusions.** The low efficiency of the embryological stage of ART was associated with semen microbiota represented by mixed obligate anaerobes without the dominance of a certain group of bacteria when semen samples with asthenozoospermia were used.

Keywords: microbiota, sperm, IVF, embryo quality.

ВВЕДЕНИЕ

По данным Российской Ассоциации Репродукции Человека (РАРЧ) в 2020 году частота наступления беременности после процедуры экстракорпорального оплодотворения (ЭКО) составила 30,0% [1]. В настоящее время доказано, что на успех ВРТ оказывает влияние множество факторов [2], одним из которых является качество эмбриона. Качество эмбриона зависит от влияния внешних факторов, в том числе от микробиоты спермы. По современным данным на микробный состав эякулята оказывает влияние микробиота уретры [3]. Не смотря на обработку семенной жидкости в ней могут остаться бактерии. Они могут колонизировать лабораторную посуду и влиять на развитие эмбрионов [4].

Цель исследования — оценить влияние микробиоты эякулята на качество эмбрионов в программах ВРТ.

МАТЕРИАЛ И МЕТОДЫ

Отбор участников проводился среди бесплодных пар, обратившихся в МЦ «Гармония» для проведения процедуры ЭКО в 2020-2021 годах. В исследование было включено 126 пар, получавших лечение бесплодия методом ВРТ.

Критериями включения в исследование являлись: возраст, женское бесплодие, отсутствие генетических заболеваний у участников и их родственников, оплодотворение методом классического ЭКО. Критериями исключения являлись: наличие инфекций, передаваемых половым путем (ИППП), клинические проявления инфекционно-воспалительных заболеваний урогенитального тракта (УГТ), низкий овариальный ответ (получение менее 4 яйцеклеток при стимуляции яичников в программе ВРТ).

Материалом для анализа служил нативный эякулят. Оценку спермограммы проводили с помощью анализатора Биола АФС-500 (НПФ «Биола», Москва). В зависимости от параметров спермограммы все пациенты были поделены на 2 группы: 1 — пациенты с астенозооспремией (n=51), 2 — пациенты с нормозооспермией (n=75).

Микробиоту эякулята оценивали методом полимеразной цепной реакции с детекцией в режиме реального времени (ПЦР-РВ) с использованием наборов реагентов Андрофлор (ДНК-Технологии, Россия). ДНК нативного эякулята выделяли с помощью комплекта реагентов ПРОБА-ГС (ООО «ДНК-Технология», Москва). Расчет общей бактериальной массы (ОБМ) проводился автоматически с помощью специального программного обеспечения. Положительными результатами считались сигналы, полученные не ранее 35 цикла амплификации, что соответствует значению ОБМ не менее 10³ геномэквивалент/мл (ГЭ/мл). 78 образцов с ОБМ не менее 10³ ГЭ/мл были

включены в последующий кластерный анализ с использованием алгоритма k-cpeдних++ (scikit-learn). Оценку качества эмбрионов проводили на 5 сутки после оплодотворения с использованием параметра качества развития бластоцист (blastocyst development rate, BDR), определяемого в доле 2PN зигот. BDR \geq 40% считался удовлетворительным, BDR < 40% - неудовлетворительным.

РЕЗУЛЬТАТЫ

При кластерном анализе микробиоты эякулята было выделено 8 микроорганизмов. кластере кластеров В 1 преобладали Lactobacillus spp.; в кластерах 2 и 3 – грамположительные факультативные анаэробы с преобладанием Corvnebacterium Streptococcus spp. И соответственно; в кластере 4 – Enterobacteriaceae/Enterococcus spp.; в кластерах 5 и 6 – облигатные анаэробы с преобладанием Bacteroides spp./Porphyromonas spp./Prevotella spp. и Peptostreptococcus spp./Parvimonas spp., соответственно. Кластер 7 был образован смесью облигатных анаэробов без преобладания какой-либо группы бактерий; кластер 8 - Mycoplasmas spp. с преобладанием Ureaplasma parvum.

Частота выявления различных кластеров микробиоты эякулята не различалась между пациентами с астенозооспермией и нормозооспермией (Группы 1 и 2). Далее в зависимости от значения BDR каждая группа была поделена на 2 подгруппы: $1A (n=25) c BDR \ge 40\%$, 1B (n=26) c BDR < 40%; $2A (n=38) c BDR \ge 40\%$, 2B (n=37) c BDR < 40%.

ОБМ >10³ ГЭ/мл была определена в 52,0% образцов подгруппы 1А и в 69,2% образцов подгруппы 1В. (p>0,05). Кластер 1 обнаруживался чаще в подгруппе 1А -20,0%, чем в 1В -7,7%, однако различия не достоверны (p>0,05). Кластер 3 выявляли с практически равной частотой в подгруппах 1А и 1В, кластер 5 выявляли чаще в подгруппе 1А -8,0%, чем в 1В -3,9% (p>0,05). Кластеры 4, 6, 8 не выявляли. Кластер 2 обнаруживали только в подгруппе 1А. Достоверно различалась частота выявления Кластера 7 в Группе 1: в подгруппе 1В кластер 7 выявлялся с частотой 53,9%, 1А -16,0%, p<0,001 (Рис. 1).

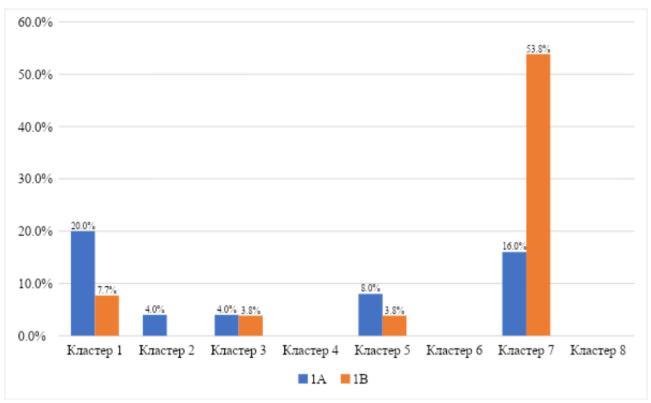


Рис.1 Частота выявления различных кластеров микробиоты в образцах эякулята с астенозооспермией

ОБМ >10³ ГЭ/мл присутствовал в 68,4% образцов подгруппы 1А и в 56,8% образцов подгруппы 1В (р>0,05). В Группе 2 кластер 1обнаруживался чаще в подгруппе 2A - 10,5%, чем в 2B - 8,1%; кластер 2 выявлялся в практически равных долях в подгруппе 2A - 2,6%, 2B - 2,7%; кластер 4 обнаруживался чаще в подгруппе 2A - 7,8%, чем в 2B - 2,7%; кластер 5 обнаруживался чаще в подгруппе 2B - 8,1%, чем в 2A - 2,6%; кластер 7 выявлялся с почти равной чапстотой в подгруппах 2A и 2B: 34,2%, и 32,4%, соответственно (р>0,05). Кластеры 3 и 8 обнаруживали только в подгруппе 2A; кластер 6 – только в подгруппе 2B (Рис. 2).

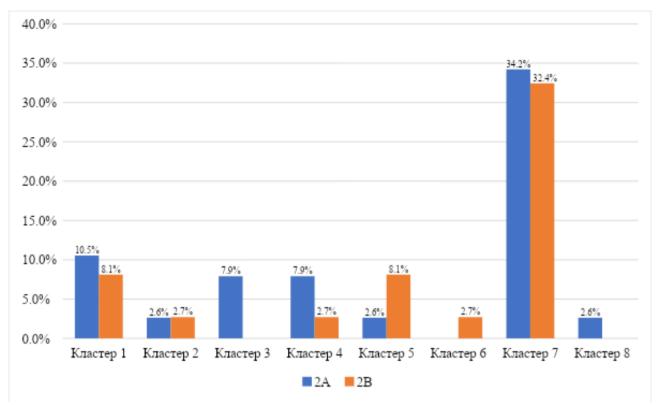


Рис.2 Частот выявления различных кластеров микробиоты в образцах эякулята с нормозооспермией

ОБСУЖДЕНИЕ

В настоящем исследовании ОБМ была определена в 61,9% исследуемых образцов. В 38,1% ОБМ отсутствовала либо была ниже пороговых значений. Наличие бактериальной ДНК в большинстве образцов эякулята согласуется с полученными ранее в ходе исследований данными [3, 5]. При этом доминирующими группами бактерий авторы указывали *Lactobacillus spp.* и *Corynebacterium spp.* [3, 5], однако в нашем исследовании наиболее представленными бактерий в положительных образцах эякулята были облигатные анаэробы в различных сочетаниях.

В настоящее время получены данные о связи снижения активности сперматозоидов и наличии в окружающей микробиоте сперматозоидов анаэробных бактерий [6]. Выявляется связь со снижением скорости развития бластоцисты и наличием анаэробных бактерий в эякуляте образцов с астенозооспермией. Такие эмбрионы могут расцениваться как эмбрионы плохого качества. Для оценки результата пункции и протекания беременности требуется дальнейший анализ данных во взаимосвязи с данными о микробном составе полученных образцов.

Ограничением данного исследования является небольшой размер выборки.

выводы

1. Две трети образцов эякулята, использованных в программах ВРТ, содержали бактерии в надпороговых значениях, в положительных образцах выявляли 8 устойчивых кластеров микробиоты.

- 2. Частота выявления различных кластеров микробиоты не различалась у пациентов с астенозооспермией и нормозооспермией.
- эмбриологического **BPT** 3. Низкая эффективность этапа при использовании эякулята cастенозооспермией была ассоциирована c микробиотой, представленной смесью облигатных анаэробов без доминирования определенной группы бактерий.

СПИСОК ИСТОЧНИКОВ

- 1. Национальный регистр РАРЧ // Российская ассоциация репродукции человека: ежегодн. отчет. -2020.-48 с.
- 2. Pomeroy, K.O. Contamination of Human IVF Cultures by Microorganisms: A Review / K.O. Pomeroy // The Journal of Clinical Embryology. -2012. Vol. 13, N0 4. P. 5-10
- 3. Sperm Microbiota and Its Impact on Semen Parameter / D. Baud, C. Pattaroni, N. Vulliemoz [et al.]. Текст: электронный // Frontiers in Microbiology. 2019. 10(234). Р. 1-9.
- 4. Seminal and vagino-uterine microbiome and their individual and interactive effects on cattle fertility / S. M. Luecke, E. M. Webb, C. R. Dahlen [et al.]. Текст : электронный // Frontiers in Microbiology. 2022. 13. Р. 1–20.
- 5. Seminal microbiome in men with and without prostatitis / R. Mandar, M. Punab, P. Korrovits [et al.]. Текст : электронный // International Journal of Urology. 2017. 24. P. 211–216.
- 6. The complex microbiome from native semen to embryo culture environment in human in vitro fertilization procedure / J. Štšepetova1, J. Baranova, J. Simm [et al.]. Текст: электронный // Reproductive Biology and Endocrinology. 2020. 18. Р. 1-13.

Сведения об авторах

- Т.А. Тяпченко* студент
- Е.А. Паначева аспирант
- Е.С. Ворошилина доктор медицинских наук, профессор

Information about the authors

- T.A. Tiapchenko student
- E.A. Panacheva Postgraduate student
- E.S. Voroshilina Candidate of Sciences (Medicine), Professor
- *Автор, ответственный за переписку (Corresponding author): tata20.02@mail.ru

УДК 614.4

РЕТРОСПЕКТИВНЫЙ ЭПИДЕМИОЛОГИЧЕСКИЙ АНАЛИЗ ЗАБОЛЕВАЕМОСТИ НОРОВИРУСНОЙ ИНФЕКЦИЕЙ В СВЕРДЛОВСКОЙ ОБЛАСТИ

Владислав Игоревич Чалапа 1,2 , Тихон Ильясович Машин 2 , Розалия Николаевна AH^2

¹ФБУН ФНИИВИ «Виром» Роспотребнадзора