От редакции

Практика публикации клинических наблюдений давно себя оправдала. Именно клинические наблюдения предваряют будущие полноценные исследования. Ниже приведены несколько случаев синхронного мониторирования и мозгового кровотока и внутричерепного давления при разных способах вентиляции. Их анализ позволил авторам придумать интересный дизайн предстоящего исследования.

Мозговой кровоток и внутричерепная гипертензия при высокочастотной и традиционной искусственной вентиляции легких (клинические наблюдения)

Д. В. Почепко, Б. Д. Зислин Клинический Институт Мозга СУНЦ РАМН, МУ ГКБ №40, г. Екатеринбург

Введение

Интерес к высокочастотной вентиляции легких уже длительное время то ослабевает, то вновь усиливается в различных областях анестезиологии и реанимации для решения разного рода проблем. В поисках путей оптимизации лечения синдрома внутричерепной гипертензии интерес к ВЧ ИВЛ в настоящее время возник и в нашей клинике. Какая же причина побудила нас вентилировать нейрореанимационного больного с высокой частотой?

Для начала хотелось бы привести общеизвестные преимущества высокочастотной ИВЛ перед традиционной, как то:

- 1. Более низкие, чем при традиционных методах, транспульмональное давление и давление в дыхательных путях, а также как и при спонтанной вентиляции, сохраняется отрицательное давление в плевральных полостях.
- 2. В отличие от традиционной ИВЛ, при высокочастотной вентиляции не отмечается депрессии гемодинамики и активации антидиуретического гормона, что рассматривается как следствие снижения стрессорных реакций.
- 3. При высокочастотной вентиляции отмечается лучшее, чем при традиционных методах ИВЛ, внутрилегочное распределение газов и меньшее шунтирование крови.
- 4. При частотах, близких к 100 циклам в минуту, подавляется спонтанное дыхание при нормальных величинах напряжения углекислоты в артериальной крови и не требуется применения депрессоров дыхания для синхронизации больного с респиратором.
- 5. При высокочастотной струйной вентиляции для сохранения адекватного газообмена не обязательна герметичность дыхательного контура.

Обладая таким количеством преимуществ перед традиционной искусственной вентиляцией легких, высокочастотная ИВЛ, вероятно, влияет и на мозговой кровоток, а следовательно, и на внутричерепное давление, что и стало предметом анализа в проведенных нами клинических наблюдениях.

Материалы и методы

Исследования были проведены у трех пациентов, в том числе у двух из которых имелась внутричерепная гипертензия, для проведения исследования мы использовали следующий краткий протокол:

- 1. Положение пациента на спине с поднятым головным концом на 30 градусов. В течение исследования положение тела не изменяется.
- 2. Санация трахеи перед каждым этапом и через час после начала каждого этапа.
- 3. Исследование проводится на фоне седации, если вне седации нельзя достигнуть нормовентиляции. Миорелаксанты были исключены, дабы возможно было получить кашлевой рефлекс при санации трахеобронхиального дерева с фиксацией нижеописанных показателей на высоте кашлевого толчка.
 - 4. Каждый этап (вид ИВЛ) занимает 1 час.
- 5. Обязательные параметры для традиционной ИВЛ: PCV, PEEP 5 мм вод. ст., I/E=1/2.
- 6. Обязательные параметры для ВЧ ИВЛ: ЧД=100, I/E=1/2.
- 7. В течение первых 15 минут каждого этапа устанавливается нормовентиляция (по данным анализа газового состава крови).
- 8. ТК УЗДГ проводится через 1 час от достижения нормовентиляции каждого этапа и во время санации.

Для регистрации показателей мозгового кровотока применялся метод транскраниальной ультразвуковой допплерографии с фиксацией параметров Рі, Ri и KO, внутричерепное дав-

Д. В. Почепко — врач анестезиолог-реаниматолог РАО 3 ГКБ № 40;

Б. Д. Зислин - д. м. н., зам. главного врача Клинического инститита мозга СУНЦ РАМН.

ление регистрировалось с помощью субдурального датчика.

Результаты

На цветной вкладке нами представлены шесть диаграмм по трем пациентам, первые три диаграммы, на рис. 1 (см. цветную вкладку), характеризуют изменение значений индексов пульсативности (Pi), резистивности (Ri), вазодилататорного резерва (КО) и инвазивно измеренного внутричерепного давления (ICP) в зависимости от вида искусственной вентиляции легких; три диаграммы на рис. 2 (см. цветную вкладку) посвящены изменению показателей Pi, Ri, КО и ICP во время санации трахеи в апноэтическую фазу через 1 час высокочастотной и традиционной ИВЛ.

На диаграммах, представленных на рис. 1 (см. цветную вкладку), при высокочастотной ИВЛ прослеживается снижение индексов пульсативности и резистивности как показателей периферического сопротивления, а следовательно, и внутричерепной гипертензии. Кроме того, на ВЧ ИВЛ отмечается нарастание величины КО, что свидетельствует об изменении в лучшую сторону системы ауторегуляции мозгового кровотока, а также косвенно отражает снижение внутричерепного давления. И, наконец, ICP, зарегистрированное с помощью субдурального датчика при высокочастотной

ИВЛ значительно ниже, чем при вентиляции традиционной.

На диаграммах, расположенных на рис. 2 (см. цветную вкладку), мы видим, что во время санации трахеи в апноэтическую фазу через 1 час высокочастотной и традиционной ИВЛ значения инвазивного ICP и допплерографические данные также отражают более низкие показатели внутричерепного давления при санации трахеи после высокочастотной ИВЛ. Более показательными и динамичными, естественно, являются цифры инвазивного ICP, чем данные допплерограммы, что обусловлено более низкой чувствительностью метода (ТКДГ) при таких быстрых изменениях внутричерепного давления.

Заключение

Отсутствие полноценных исследований влияния высокочастотной вентиляции легких на мозговой кровоток и внутричерепную гипертензию и противоречивый характер единичных и противоречивых мнений на этот счет послужили мотивом начатого исследования.

Литература

 Зислин Б.Д., Конторович М.Б. Новые возможности мониторинга параметров механики дыхания при высокочастотной струйной вентиляции легких. Вестник Интенсивной Терапии. М.: 2006: 6: 30-32.

Полный список литературы см. на сайте www.urmj.ru

От редакции

Нейропротекция — самый популярный вид терапии, но на сегодняшний день для него нет ни одного фармсредства с подтвержденным эффектом. Пока экспериментальные данные указывают на перспективность только одного способа повышения переживаемости нервной системы в условиях острого повреждения — гипотермии. Авторы представляют литературный обзор проблемы и выделяют наиболее актуальные для клинического применения аспекты.

Гипотермия. Есть ли практические рекомендации? Обзор состояния проблемы

А. А. Аврамченко, А. А. Белкин Клинический Институт Мозга СУНЦ РАМН, МУ ГКБ №40, г. Екатеринбург

Введение

Теоретические и экспериментальные исследования и попытки практического приме-

А. А. Белкин — д. м. н., проф. каф. нервных болезней и нейрохирургии УГМА; Дир. Клинического института Мозга Средне-Уральского Научного Центра РАМН; Зам. гл. врача ГКБ№ 40 по неврологии и нейрохирургии, Главный невролог г. Екатеринбурга.

А. А. Аврамченко — анестезиолог-реаниматолог, РАО 3, ГКБ №40.

нения искусственной гипотермии ведутся со времени становления реаниматологии как дисциплины, и до сих пор гораздо больше вопросов, чем ответов. Нет единства и в определении фундаментальных понятий. Что такое нормотермия? Большинство авторов полагают, что это диапазон температур между так называемым «тепловым порогом», равным 37,2 °С и «холодовым порогом», равным 36,2-36,8 °С.